Yongyan Wu
Northwest A&F University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yongyan Wu.
PLOS ONE | 2011
Jianmin Su; Yongsheng Wang; Yanyan Li; Ruizhe Li; Qian Li; Yongyan Wu; Fusheng Quan; Jun Liu; Zekun Guo; Yong Zhang
Aberrant epigenetic nuclear reprogramming results in low somatic cloning efficiency. Altering epigenetic status by applying histone deacetylase inhibitors (HDACi) enhances developmental potential of somatic cell nuclear transfer (SCNT) embryos. The present study was carried out to examine the effects of Oxamflatin, a novel HDACi, on the nuclear reprogramming and development of bovine SCNT embryos in vitro. We found that Oxamflatin modified the acetylation status on H3K9 and H3K18, increased total and inner cell mass (ICM) cell numbers and the ratio of ICM∶trophectoderm (TE) cells, reduced the rate of apoptosis in SCNT blastocysts, and significantly enhanced the development of bovine SCNT embryos in vitro. Furthermore, Oxamflatin treatment suppressed expression of the pro-apoptotic gene Bax and stimulated expression of the anti-apoptotic gene Bcl-XL and the pluripotency-related genes OCT4 and SOX2 in SCNT blastocysts. Additionally, the treatment also reduced the DNA methylation level of satellite I in SCNT blastocysts. In conclusion, Oxamflatin modifies epigenetic status and gene expression, increases blastocyst quality, and subsequently enhances the nuclear reprogramming and developmental potential of SCNT embryos.
PLOS ONE | 2015
Jingcheng Zhang; Yang Gao; Mengying Yu; Haibo Wu; Zhiying Ai; Yongyan Wu; Hongliang Liu; Juan Du; Zekun Guo; Yong Zhang
Retinoic acid (RA) is a vitamin A metabolite that is essential for early embryonic development and promotes stem cell neural lineage specification; however, little is known regarding the impact of RA on mRNA transcription and microRNA levels on embryonic stem cell differentiation. Here, we present mRNA microarray and microRNA high-output sequencing to clarify how RA regulates gene expression. Using mRNA microarray analysis, we showed that RA repressed pluripotency-associated genes while activating ectoderm markers in mouse embryonic stem cells (mESCs). Moreover, RA modulated the DNA methylation of mESCs by altering the expression of epigenetic-associated genes such as Dnmt3b and Dnmt3l. Furthermore, H3K4me2, a pluripotent histone modification, was repressed by RA stimulation. From microRNA sequence data, we identified two downregulated microRNAs, namely, miR-200b and miR-200c, which regulated the pluripotency of stem cells. We found that miR-200b or miR-200c deficiency suppressed the expression of pluripotent genes, including Oct4 and Nanog, and activated the expression of the ectodermal marker gene Nestin. These results demonstrate that retinoid induces mESCs to differentiate by regulating miR-200b/200c. Our findings provide the landscapes of mRNA and microRNA gene networks and indicate the crucial role of miR-200b/200c in the RA-induced differentiation of mESCs.
Stem Cells | 2014
Haibo Wu; Yongyan Wu; Zhiying Ai; Liping Yang; Yuan Gao; Juan Du; Zekun Guo; Yong Zhang
Vitamin C (Vc), also known as ascorbic acid, is involved in many important metabolic and physiological reactions in the body. Here, we report that Vc enhances the expression of Nanog and inhibits retinoic acid‐induced differentiation of embryonic stem cells. We investigated Vc regulation of Nanog through Janus kinase/signal transducer and activator of transcription pathway using cell signaling pathway profiling systems, and further confirmed by specific pathway inhibition. Using overexpression and knockdown strategies, we demonstrated that STAT2 is a new positive regulator of Nanog and is activated by phosphorylation following Vc treatment. In addition, site mutation analysis identified that STAT2 physically occupies the Nanog promoter, which was confirmed by chromatin immunoprecipitation and electrophoretic mobility shift assays. Taken together, our data suggest a role for Vc in Nanog regulation networks and reveal a novel role for STAT2 in regulating Nanog expression. Stem Cells 2014;32:166–176
FEBS Journal | 2015
Yuan Gao; Zhuo Han; Qian Li; Yongyan Wu; Xiaoyan Shi; Zhiying Ai; Juan Du; Wenzhong Li; Zekun Guo; Yong Zhang
MicroRNAs (miRNAs), a group of noncoding RNAs, function as post‐transcriptional gene regulators and control the establishment, self‐renewal and differentiation of stem cells. Vitamin C has been recognized as a reprogramming enhancer because of its ability to induce a blastocyst‐like state in embryonic stem cells (ESCs). However, knowledge on the regulation of miRNAs by vitamin C in ESCs is limited. In this study, we found that vitamin C induced miRNA expression, particularly of ESC‐specific miRNAs. Moreover, vitamin C maintained the miRNA expression of the Dlk1–Dio3 imprinting region. The miRNAs in this region contain identical seed sequences, which target a class of genes, including Kdm6b, Klf13, and Sox6, and are mainly related to cell differentiation and development. These genes were significantly downregulated by vitamin C. Notably, miR‐143 promoted self‐renewal of mouse ESCs and suppressed expression of the de novo methyltransferase gene Dnmt3a. Knockdown of miR‐143 by use of its inhibitor counteracted the vitamin C‐induced reduction in Dnmt3a expression, showing that vitamin C repressed Dnmt3a expression via miR‐143. Vitamin C also promoted DNA demethylation, including of pluripotency gene promoters (Tbx3, Tcl1, and Esrrb) and ESC‐specific miRNA promoters (miR‐290–295 and miR‐17–92 clusters), and DNA hydroxymethylation, including of the intergenic differentially methylated region of the Dlk1–Dio3 region. These results strongly suggested that vitamin C promoted widespread DNA demethylation in gene promoters by modulating epigenetic modifiers, including Dnmt3a, which activated pluripotency genes and ESC‐specific miRNAs. Then, differentiation and development genes were repressed by ESC‐enriched miRNAs, which maintained the stem cell state.
Cellular Physiology and Biochemistry | 2013
Xiaoyan Shi; Yongyan Wu; Zhiying Ai; Xin Liu; Liping Yang; Juan Du; Jingjing Shao; Zekun Guo; Yong Zhang
Backgroud/Aims: Embryonic stem cells (ES cells) have the capacity to propagate indefinitely, maintain pluripotency, and differentiate into any cell type under defined conditions. As a result, they are considered to be the best model system for research into early embryonic development. AICA ribonucleotide (AICAR) is an activator of AMP-activated protein kinase (AMPK) that is thought to affect ES cell function, but its role in ES cell fate decision is unclear. Methods: In this study, we performed microarray analysis to investigate AICAR downstream targets and further understand its effect on ES cells. Results: Our microarray data demonstrated that AICAR can significantly up-regulate pluripotency-associated genes and down-regulate differentiation-associated transcription factors. Although AICAR cannot maintain ES cell identity without LIF, it can antagonize the action of RA-induced differentiation. Using those differentially expressed genes identified, we performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis with the Database for Annotation, Visualization and Integrated Discovery (DAVID) online system. AICAR was not only shown to influence the AMPK pathway, but also act on other signaling pathways such as BMP, MAPK and TGF-β, to maintain the stemness of J1 ES cells. Furthermore, AICAR modulated ES cell epigenetic modification by altering the expression of epigenetic-associated proteins, including Dnmt3a, Dnmt3b, Smarca2, Mbd3, and Arid1a, or through regulating the transcription of long intervening non-coding RNA (lincRNA). Conclusion: Taken together, our work suggests that AICAR is capable of maintaining ES cell self-renewal and pluripotency, which could be useful in future medical treatment.
PLOS ONE | 2012
Hui Peng; Yongyan Wu; Yong Zhang
Mouse preimplantation development is characterized by three major transitions and two lineage segregations. Each transition or lineage segregation entails pronounced changes in the pattern of gene expression. Thus, research into the function of genes with obvious changes in expression pattern will shed light on the molecular basis of preimplantation development. We have described a simplified and effective method–electroporation–of introducing plasmid DNA and morpholinos into mouse preimplantation embryos and verified effectiveness of this approach by testing the procedure on the endogenous gene Oct4. Before electroporation, the zona pellucida was weakened by the treatment of acid Tyrode’s solution. Then we optimized the parameters such as voltage, pulse duration, number of pulses and repeats, and applied these parameters to subsequent experiments. Compared with the control groups, the number of apoptotic cells and the expression and localization of OCT3/4 or CDX2 was not significantly changed in blastocysts developed from 1-cell embryos, which were electroporated with pIRES2-AcGFP1-Nuc eukaryotic expression vector or mismatched morpholino oligonucleotides. Furthermore, electroporated plasmid DNA and morpholinos targeting the endogenous gene Oct4 were able to sharply down regulate expression of OCT4 protein and actually cause expected phenotypes in mouse preimplantation embryos. In conclusion, plasmid DNA and morpholinos could be efficient delivered into mouse preimplantation embryos by electroporation and exert their functions, and normal development of preimplantation embryos was not affected.
Molecular Biology Reports | 2013
Yongyan Wu; Zekun Guo; Ye Liu; Bo Tang; Yi Wang; Liping Yang; Juan Du; Yong Zhang
The ten eleven translocation (Tet) family of proteins includes three members (Tet1–3), all of which have the capacity to convert 5-methylcytosine to 5-hydroxymethylcytosine in a 2-oxoglutarate- and Fe(II)-dependent manner. Tet1 and Tet2 are highly expressed in undifferentiated embryonic stem cells (ESCs), and this expression decreases upon differentiation. Notably, the expression patterns of Tet1 and Tet2 in ESCs parallels that of pluripotency genes. To date, however, the mechanisms underlying the regulation of Tet gene expression in ESCs remain largely unexplored. Here we report that the pluripotency transcription factor, Oct4, directly regulates the expression of Tet2. Using RNAi, real time quantitative PCR, dual-luciferase reporter assays and electrophoretic mobility shift assays, we show that Oct4 promotes Tet2 transcription by binding to consensus sites in the proximal promoter region. Furthermore, we explored the role of the small molecule inhibitor, SC1 (pluripotin) on Tet gene expression. We show that SC1 promotes Tet3 expression, but represses Tet1 and Tet2 expression. Our findings indicate that Tet2 are crucial downstream targets of the pluripotency factor Oct4, and highlight a role for Oct4 in the regulation of DNA methylation in ESCs. In addition, these findings also provide a new insight into drug-mediated gene regulation.
Experimental Cell Research | 2013
Yongyan Wu; Zhiying Ai; Kezhen Yao; Lixia Cao; Juan Du; Xiaoyan Shi; Zekun Guo; Yong Zhang
Embryonic stem cells (ESCs) can proliferate indefinitely in vitro and differentiate into cells of all three germ layers. These unique properties make them exceptionally valuable for drug discovery and regenerative medicine. However, the practical application of ESCs is limited because it is difficult to derive and culture ESCs. It has been demonstrated that CHIR99021 (CHIR) promotes self-renewal and enhances the derivation efficiency of mouse (m)ESCs. However, the downstream targets of CHIR are not fully understood. In this study, we identified CHIR-regulated genes in mESCs using microarray analysis. Our microarray data demonstrated that CHIR not only influenced the Wnt/β-catenin pathway by stabilizing β-catenin, but also modulated several other pluripotency-related signaling pathways such as TGF-β, Notch and MAPK signaling pathways. More detailed analysis demonstrated that CHIR inhibited Nodal signaling, while activating bone morphogenetic protein signaling in mESCs. In addition, we found that pluripotency-maintaining transcription factors were up-regulated by CHIR, while several developmental-related genes were down-regulated. Furthermore, we found that CHIR altered the expression of epigenetic regulatory genes and long intergenic non-coding RNAs. Quantitative real-time PCR results were consistent with microarray data, suggesting that CHIR alters the expression pattern of protein-encoding genes (especially transcription factors), epigenetic regulatory genes and non-coding RNAs to establish a relatively stable pluripotency-maintaining network.
Biochimie | 2013
Yuan Gao; Liping Yang; Linlin Chen; Xiangxue Wang; Haibo Wu; Zhiying Ai; Juan Du; Ye Liu; Xiaoyan Shi; Yongyan Wu; Zekun Guo; Yong Zhang
Vitamin C has recently received attention because of its ability to improve induced pluripotent stem cells (iPSCs) generation [1-3] and maintain a blastocyst-like state in ES cells [4]. However, the underlying mechanisms are not fully understood. In this study, we found that vitamin C maintained the morphology of mouse embryonic stem cell (mESC) colonies and inhibited mESC differentiation. Gene expression profiling revealed that the genes down-regulated by vitamin C were grouped in the regulation of differentiation and development, while most of the up-regulated genes were enriched in the regulation of transcription involving numerous pluripotency factors, which was further confirmed by real time quantitative PCR. For the key pluripotency factor Nanog, vitamin C increased its promoter activity and protein level. In addition, pathway screening indicated that vitamin C may affect various signaling pathways. Our study provides new insights into vitamin C-mediated pluripotency maintenance of mESCs.
Cellular Signalling | 2014
Juan Du; Yongyan Wu; Zhiying Ai; Xiaoyan Shi; Linlin Chen; Zekun Guo
SB431542 (SB) is an established small molecular inhibitor that specifically binds to the ATP binding domains of the activin receptor-like kinase receptors, ALK5, ALK4 and ALK7, and thus specifically inhibits Smad2/3 activation and blocks TGF-β signal transduction. SB maintains the undifferentiated state of mouse embryonic stem cells. However, the way of SB in maintaining the undifferentiated state of mouse embryonic stem cells remains unclear. Considering that SB could not maintain embryonic stem cells pluripotency when leukemia inhibitory factor was withdrawn, we sought to identify the mechanism of SB on pluripotent maintenance. Transcripts regulated by SB, including message RNAs and small non-coding RNAs were examined through microarray and deep-sequence experiments. After examination, Western blot analysis, and quantitative real-time PCR verification, we found that SB regulated the transcript expressions related to self-renewal and differentiation. SB mainly functioned by inhibiting differentiation. The key pluripotent factors expression were not significantly affected by SB, and intrinsic differentiation-related transcripts including fibroblast growth factor family members, were significantly down-regulated by SB. Moreover, SB could partially inhibit the retinoic acid response to neuronal differentiation of mouse embryonic stem cells.