Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yongyi Yang is active.

Publication


Featured researches published by Yongyi Yang.


IEEE Transactions on Medical Imaging | 2002

A support vector machine approach for detection of microcalcifications

Issam El-Naqa; Yongyi Yang; Miles N. Wernick; Nikolas P. Galatsanos; Robert M. Nishikawa

We investigate an approach based on support vector machines (SVMs) for detection of microcalcification (MC) clusters in digital mammograms, and propose a successive enhancement learning scheme for improved performance. SVM is a machine-learning method, based on the principle of structural risk minimization, which performs well when applied to data outside the training set. We formulate MC detection as a supervised-learning problem and apply SVM to develop the detection algorithm. We use the SVM to detect at each location in the image whether an MC is present or not. We tested the proposed method using a database of 76 clinical mammograms containing 1120 MCs. We use free-response receiver operating characteristic curves to evaluate detection performance, and compare the proposed algorithm with several existing methods. In our experiments, the proposed SVM framework outperformed all the other methods tested. In particular, a sensitivity as high as 94% was achieved by the SVM method at an error rate of one false-positive cluster per image. The ability of SVM to outperform several well-known methods developed for the widely studied problem of MC detection suggests that SVM is a promising technique for object detection in a medical imaging application.


IEEE Transactions on Circuits and Systems for Video Technology | 1993

Regularized reconstruction to reduce blocking artifacts of block discrete cosine transform compressed images

Yongyi Yang; Nikolas P. Galatsanos; Aggelos K. Katsaggelos

The reconstruction of images from incomplete block discrete cosine transform (BDCT) data is examined. The problem is formulated as one of regularized image recovery. According to this formulation, the image in the decoder is reconstructed by using not only the transmitted data but also prior knowledge about the smoothness of the original image, which complements the transmitted data. Two methods are proposed for solving this regularized recovery problem. The first is based on the theory of projections onto convex sets (POCS) while the second is based on the constrained least squares (CLS) approach. For the POCS-based method, a new constraint set is defined that conveys smoothness information not captured by the transmitted BDCT coefficients, and the projection onto it is computed. For the CLS method an objective function is proposed that captures the smoothness properties of the original image. Iterative algorithms are introduced for its minimization. Experimental results are presented. >


IEEE Transactions on Image Processing | 1995

Projection-based spatially adaptive reconstruction of block-transform compressed images

Yongyi Yang; Nikolas P. Galatsanos; Aggelos K. Katsaggelos

At the present time, block-transform coding is probably the most popular approach for image compression. For this approach, the compressed images are decoded using only the transmitted transform data. We formulate image decoding as an image recovery problem. According to this approach, the decoded image is reconstructed using not only the transmitted data but, in addition, the prior knowledge that images before compression do not display between-block discontinuities. A spatially adaptive image recovery algorithm is proposed based on the theory of projections onto convex sets. Apart from the data constraint set, this algorithm uses another new constraint set that enforces between-block smoothness. The novelty of this set is that it captures both the local statistical properties of the image and the human perceptual characteristics. A simplified spatially adaptive recovery algorithm is also proposed, and the analysis of its computational complexity is presented. Numerical experiments are shown that demonstrate that the proposed algorithms work better than both the JPEG deblocking recommendation and our previous projection-based image decoding approach.


international conference of the ieee engineering in medicine and biology society | 2009

Computer-Aided Detection and Diagnosis of Breast Cancer With Mammography: Recent Advances

Jinshan Tang; Rangaraj M. Rangayyan; Jun Xu; I. El Naqa; Yongyi Yang

Breast cancer is the second-most common and leading cause of cancer death among women. It has become a major health issue in the world over the past 50 years, and its incidence has increased in recent years. Early detection is an effective way to diagnose and manage breast cancer. Computer-aided detection or diagnosis (CAD) systems can play a key role in the early detection of breast cancer and can reduce the death rate among women with breast cancer. The purpose of this paper is to provide an overview of recent advances in the development of CAD systems and related techniques. We begin with a brief introduction to some basic concepts related to breast cancer detection and diagnosis. We then focus on key CAD techniques developed recently for breast cancer, including detection of calcifications, detection of masses, detection of architectural distortion, detection of bilateral asymmetry, image enhancement, and image retrieval.


IEEE Transactions on Medical Imaging | 2004

A similarity learning approach to content-based image retrieval: application to digital mammography

Issam El-Naqa; Yongyi Yang; Nikolas P. Galatsanos; Robert M. Nishikawa; Miles N. Wernick

In this paper, we describe an approach to content-based retrieval of medical images from a database, and provide a preliminary demonstration of our approach as applied to retrieval of digital mammograms. Content-based image retrieval (CBIR) refers to the retrieval of images from a database using information derived from the images themselves, rather than solely from accompanying text indices. In the medical-imaging context, the ultimate aim of CBIR is to provide radiologists with a diagnostic aid in the form of a display of relevant past cases, along with proven pathology and other suitable information. CBIR may also be useful as a training tool for medical students and residents. The goal of information retrieval is to recall from a database information that is relevant to the users query. The most challenging aspect of CBIR is the definition of relevance (similarity), which is used to guide the retrieval machine. In this paper, we pursue a new approach, in which similarity is learned from training examples provided by human observers. Specifically, we explore the use of neural networks and support vector machines to predict the users notion of similarity. Within this framework we propose using a hierarchal learning approach, which consists of a cascade of a binary classifier and a regression module to optimize retrieval effectiveness and efficiency. We also explore how to incorporate online human interaction to achieve relevance feedback in this learning framework. Our experiments are based on a database consisting of 76 mammograms, all of which contain clustered microcalcifications (MCs). Our goal is to retrieve mammogram images containing similar MC clusters to that in a query. The performance of the retrieval system is evaluated using precision-recall curves computed using a cross-validation procedure. Our experimental results demonstrate that: 1) the learning framework can accurately predict the perceptual similarity reported by human observers, thereby serving as a basis for CBIR; 2) the learning-based framework can significantly outperform a simple distance-based similarity metric; 3) the use of the hierarchical two-stage network can improve retrieval performance; and 4) relevance feedback can be effectively incorporated into this learning framework to achieve improvement in retrieval precision based on online interaction with users; and 5) the retrieved images by the network can have predicting value for the disease condition of the query.


IEEE Transactions on Medical Imaging | 2005

A study on several Machine-learning methods for classification of Malignant and benign clustered microcalcifications

Liyang Wei; Yongyi Yang; Robert M. Nishikawa; Yulei Jiang

In this paper, we investigate several state-of-the-art machine-learning methods for automated classification of clustered microcalcifications (MCs). The classifier is part of a computer-aided diagnosis (CADx) scheme that is aimed to assisting radiologists in making more accurate diagnoses of breast cancer on mammograms. The methods we considered were: support vector machine (SVM), kernel Fisher discriminant (KFD), relevance vector machine (RVM), and committee machines (ensemble averaging and AdaBoost), of which most have been developed recently in statistical learning theory. We formulated differentiation of malignant from benign MCs as a supervised learning problem, and applied these learning methods to develop the classification algorithm. As input, these methods used image features automatically extracted from clustered MCs. We tested these methods using a database of 697 clinical mammograms from 386 cases, which included a wide spectrum of difficult-to-classify cases. We analyzed the distribution of the cases in this database using the multidimensional scaling technique, which reveals that in the feature space the malignant cases are not trivially separable from the benign ones. We used receiver operating characteristic (ROC) analysis to evaluate and to compare classification performance by the different methods. In addition, we also investigated how to combine information from multiple-view mammograms of the same case so that the best decision can be made by a classifier. In our experiments, the kernel-based methods (i.e., SVM, KFD, and RVM) yielded the best performance (A/sub z/=0.85, SVM), significantly outperforming a well-established, clinically-proven CADx approach that is based on neural network (A/sub z/=0.80).


IEEE Transactions on Image Processing | 2005

Digital watermarking robust to geometric distortions

Ping Dong; Jovan G. Brankov; Nikolas P. Galatsanos; Yongyi Yang; Franck Davoine

In this paper, we present two watermarking approaches that are robust to geometric distortions. The first approach is based on image normalization, in which both watermark embedding and extraction are carried out with respect to an image normalized to meet a set of predefined moment criteria. We propose a new normalization procedure, which is invariant to affine transform attacks. The resulting watermarking scheme is suitable for public watermarking applications, where the original image is not available for watermark extraction. The second approach is based on a watermark resynchronization scheme aimed to alleviate the effects of random bending attacks. In this scheme, a deformable mesh is used to correct the distortion caused by the attack. The watermark is then extracted from the corrected image. In contrast to the first scheme, the latter is suitable for private watermarking applications, where the original image is necessary for watermark detection. In both schemes, we employ a direct-sequence code division multiple access approach to embed a multibit watermark in the discrete cosine transform domain of the image. Numerical experiments demonstrate that the proposed watermarking schemes are robust to a wide range of geometric attacks.


Physics in Medicine and Biology | 2003

Multiple-image radiography

Miles N. Wernick; Oliver Wirjadi; Dean Chapman; Zhong Zhong; Nikolas P. Galatsanos; Yongyi Yang; Jovan G. Brankov; O. Oltulu; Mark A. Anastasio; Carol Muehleman

Conventional radiography produces a single image of an object by measuring the attenuation of an x-ray beam passing through it. When imaging weakly absorbing tissues, x-ray attenuation may be a suboptimal signature of disease-related information. In this paper we describe a new phase-sensitive imaging method, called multiple-image radiography (MIR), which is an improvement on a prior technique called diffraction-enhanced imaging (DEI). This paper elaborates on our initial presentation of the idea in Wernick et al (2002 Proc. Int. Symp. Biomed. Imaging pp 129-32). MIR simultaneously produces several images from a set of measurements made with a single x-ray beam. Specifically, MIR yields three images depicting separately the effects of refraction, ultra-small-angle scatter and attenuation by the object. All three images have good contrast, in part because they are virtually immune from degradation due to scatter at higher angles. MIR also yields a very comprehensive object description, consisting of the angular intensity spectrum of a transmitted x-ray beam at every image pixel, within a narrow angular range. Our experiments are based on data acquired using a synchrotron light source; however, in preparation for more practical implementations using conventional x-ray sources, we develop and evaluate algorithms designed for Poisson noise, which is characteristic of photon-limited imaging. The results suggest that MIR is capable of operating at low photon count levels, therefore the method shows promise for use with conventional x-ray sources. The results also show that, in addition to producing new types of object descriptions, MIR produces substantially more accurate images than its predecessor, DEI. MIR results are shown in the form of planar images of a phantom and a biological specimen. A preliminary demonstration of the use of MIR for computed tomography is also presented.


IEEE Signal Processing Magazine | 2010

Machine Learning in Medical Imaging

Miles N. Wernick; Yongyi Yang; Jovan G. Brankov; Grigori Yourganov; Stephen C. Strother

This article will discuss very different ways of using machine learning that may be less familiar, and we will demonstrate through examples the role of these concepts in medical imaging. Although the term machine learning is relatively recent, the ideas of machine learning have been applied to medical imaging for decades, perhaps most notably in the areas of computer-aided diagnosis (CAD) and functional brain mapping. We will not attempt in this brief article to survey the rich literature of this field. Instead our goals will be 1) to acquaint the reader with some modern techniques that are now staples of the machine-learning field and 2) to illustrate how these techniques can be employed in various ways in medical imaging.


IEEE Transactions on Medical Imaging | 2005

Relevance vector machine for automatic detection of clustered microcalcifications

Liyang Wei; Yongyi Yang; Robert M. Nishikawa; Miles N. Wernick; Alexandra Edwards

Clustered microcalcifications (MC) in mammograms can be an important early sign of breast cancer in women. Their accurate detection is important in computer-aided detection (CADe). In this paper, we propose the use of a recently developed machine-learning technique - relevance vector machine (RVM) - for detection of MCs in digital mammograms. RVM is based on Bayesian estimation theory, of which a distinctive feature is that it can yield a sparse decision function that is defined by only a very small number of so-called relevance vectors. By exploiting this sparse property of the RVM, we develop computerized detection algorithms that are not only accurate but also computationally efficient for MC detection in mammograms. We formulate MC detection as a supervised-learning problem, and apply RVM as a classifier to determine at each location in the mammogram if an MC object is present or not. To increase the computation speed further, we develop a two-stage classification network, in which a computationally much simpler linear RVM classifier is applied first to quickly eliminate the overwhelming majority, non-MC pixels in a mammogram from any further consideration. The proposed method is evaluated using a database of 141 clinical mammograms (all containing MCs), and compared with a well-tested support vector machine (SVM) classifier. The detection performance is evaluated using free-response receiver operating characteristic (FROC) curves. It is demonstrated in our experiments that the RVM classifier could greatly reduce the computational complexity of the SVM while maintaining its best detection accuracy. In particular, the two-stage RVM approach could reduce the detection time from 250 s for SVM to 7.26 s for a mammogram (nearly 35-fold reduction). Thus, the proposed RVM classifier is more advantageous for real-time processing of MC clusters in mammograms.

Collaboration


Dive into the Yongyi Yang's collaboration.

Top Co-Authors

Avatar

Miles N. Wernick

Illinois Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jovan G. Brankov

Illinois Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael A. King

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaofeng Niu

Illinois Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

P. Hendrik Pretorius

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Mingwu Jin

University of Texas at Arlington

View shared research outputs
Top Co-Authors

Avatar

Henry Stark

Illinois Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Wenyuan Qi

Illinois Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge