Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yongzhen Peng is active.

Publication


Featured researches published by Yongzhen Peng.


Reviews of Environmental Contamination and Toxicology | 2008

Biological removal of nitrogen from wastewater

Guibing Zhu; Yongzhen Peng; Baikun Li; Jianhua Guo; Qing Yang; Shuying Wang

This comprehensive review discusses diverse conventional and novel technologies for nitrogen removal from wastewater. Novel technologies have distinct advantages in terms of saving configuration, aeration, and carbon sources. Each novel technology possesses promising features and potential problems. For instance, SND and OLAND processes can achieve 100% total nitrogen removal, but the low oxygen concentration required by these two processes substantially reduces the nitrification rate, which limits their application. On the other hand, denitrification can still be carried out by aerobic denitrifiers at high DO levels in activated sludge process, but it is difficult to cultivate this type of bacteria. The SHARON process is most commonly used for shortcut nitrification and denitrification because of its low requirements for retention time, oxygen concentration, and carbon source. However, its high operational temperature (about 35 degrees C) limits the application. Several real-time control strategies (DO, pH, and ORP) have been developed to achieve a stable nitrite accumulation in SHARON. The ANAMMOX process can sustain at high total-N loadings and has been employed in full-scale treatment plants, but the problem of nitrite supply has not been solved, and the treated wastewater still contains nitrate. In addition, the inoculation and enrichment of ANAMMOX bacteria (i.e., anaerobic AOB) is difficult. The problem of nitrite supply has been solved by combining partial nitrification with ANAMMOX, which provides abundant nitrite for anaerobic AOB. ANAMMOX is currently used for treating sludge digestion supernatant. Aerobic dammonitrification is a process combining partial nitrification and ANAMMOX at different layers of biofilm. Although the technology has been tested in pilot- and full-scale experiments, the mechanism is still unclear. CANON and OLAND are one-step ammonium removal processes that possess distinct advantages of saving carbon sources and aeration costs. The major challenge is the enrichment of anaerobic microorganisms capable of oxidizing ammonia with nitrite as the electron acceptor. Molecular biology and environmental biotechnology can help identify functional microorganisms, characterize microbial communities, and develop new nitrogen removal processes. Extensive research should be conducted to apply and optimize these novel processes in wastewater treatment plants. More effort should be invested to combine these novel processes (e.g., partial nitrification, ANAMMOX) to enhance nitrogen removal efficiency.


Chemosphere | 2003

Treatment of coke-plant wastewater by biofilm systems for removal of organic compounds and nitrogen

Yingxuan Li; Guowei Gu; Jianfu Zhao; Han-Qing Yu; Yuping Qiu; Yongzhen Peng

Coke-plant wastewater was treated by an anaerobic-anoxic-aerobic (A(1)-A(2)-O) biofilm system and an anoxic-aerobic (A/O) biofilm system, respectively. At same or similar levels of hydraulic retention time (HRT), the two systems had almost identical chemical oxygen demand (COD) and NH(3) removals, but a different organic-N removal. Set-up of an acidogenic stage benefited for the removal of organic-N and the A(1)-A(2)-O system was more useful for total nitrogen removal than the A-O system. HRT did not have a substantial effect on the COD and NH(3)-N removal efficiencies, but considerably influenced the organic-N removal and distribution of oxidized nitrogen in the final effluent. The GC/MS analysis demonstrated that some refractory compounds were decomposed at the acidogenic stage and resulted in the production of some intermediates, which were more readily degraded in the subsequent aerobic stage. Hence, the A(1)-A(2)-O system had better effluent quality than the A-O system in terms of effluent composition.


Bioresource Technology | 2009

Long-term effect of dissolved oxygen on partial nitrification performance and microbial community structure.

Jianhua Guo; Yongzhen Peng; Shuying Wang; Yanan Zheng; Huijun Huang; Zhongwei Wang

In this study, the performance of partial nitrification via nitrite and microbial community structure were investigated and compared in two sequencing batch reactors (SBR) with different dissolved oxygen (DO) levels. Both reactors achieved stable partial nitrification with nitrite accumulation ratio of above 95% by using real-time aeration duration control. Compared with high DO (above 3 mg/l on average) SBR, simultaneous nitrification and denitrification (SND) via nitrite was carried out in low DO (0.4-0.8 mg/l) SBR. The average efficiencies of SND in high DO and low DO reactor were 7.7% and 44.9%, and the specific SND rates were 0.20 and 0.83 mg N/(mg MLSS h), respectively. Low DO did not produce sludge with poorer settling properties but attained lower turbidities of the effluent than high DO. Fluorescence in situ hybridization (FISH) analysis in both the reactors showed that ammonia-oxidizing bacteria (AOB) were the dominant nitrifying bacteria and nitrite-oxidizing bacteria (NOB) did not be recovered in spite of exposing nitrifying sludge to high DO. The morphology of the sludge from both two reactors according to scanning electron microscope indicated that small rod-shaped and spherical clusters were dominant, although filamentous bacteria and few long rod-shaped coexisted in the low DO reactor. By selecting properly DO level and adopting process control method is not only of benefit to the achievement of novel biological nitrogen removal technology, but also favorable to sludge population optimization.


Water Research | 2009

Achieving nitrogen removal via nitrite in a pilot-scale continuous pre-denitrification plant

Yong Ma; Yongzhen Peng; Shuying Wang; Zhiguo Yuan; Xiaolian Wang

Nitrogen removal via nitrite (the nitrite pathway) is beneficial for carbon-limited biological wastewater treatment plants. However, partial nitrification to nitrite has proven difficult in continuous processes treating domestic wastewater. The nitrite pathway is achieved in this study in a pilot-scale continuous pre-denitrification plant (V=300 L) treating domestic wastewater by controlling the dissolved oxygen (DO) concentration at 0.4-0.7 mg/L. It is demonstrated that the nitrite pathway could be repeatedly and reliably achieved, with over 95% of the oxidized nitrogen compounds at the end of the aerobic zone being nitrite. The nitrite pathway improved the total nitrogen (TN) removal by about 20% in comparison to the nitrate pathway, and also reduced aeration costs by 24%. FISH analysis showed that the nitrite oxidizing bacteria (NOB) population gradually reduced at low DO levels, and reached negligible levels when stable nitrite pathway was established. It is hypothesized that NOB was washed out due to its relatively lower affinity with oxygen. A lag phase was observed in the establishment of the nitrite pathway. Several sludge ages were required for the onset of the nitrite pathway after the application of low DO levels. However, nitrite accumulation increased rapidly after that. A similar lag phase was observed for the upset of the nitrite pathway when a DO concentration of 2-3 mg/L was applied. The nitrite pathway negatively impacted on the sludge settleability. A strong correlation between the sludge volume index and the degree of nitrite accumulation was observed.


Bioresource Technology | 2016

Biological nitrogen removal from sewage via anammox: Recent advances.

Bin Ma; Shanyun Wang; Shenbin Cao; Yuanyuan Miao; Fangxu Jia; Rui Du; Yongzhen Peng

Biological nitrogen removal from sewage via anammox is a promising and feasible technology to make sewage treatment energy-neutral or energy-positive. Good retention of anammox bacteria is the premise of achieving sewage treatment via anammox. Therefore the anammox metabolism and its factors were critically reviewed so as to form biofilm/granules for retaining anammox bacteria. A stable supply of nitrite for anammox bacteria is a real bottleneck for applying anammox in sewage treatment. Nitritation and partial-denitrification are two promising methods of offering nitrite. As such, the strategies for achieving nitritation in sewage treatment were summarized by reviewing the factors affecting nitrite oxidation bacteria growth. Meanwhile, the methods of achieving partial-denitrification have been developed through understanding the microorganisms related with nitrite accumulation and their factors. Furthermore, two cases of applying anammox in the mainstream sewage treatment plants were documented.


Journal of Hazardous Materials | 2010

Biosorption of Acid Yellow 17 from aqueous solution by non-living aerobic granular sludge.

Jing-Feng Gao; Qian Zhang; Kai Su; Ranni Chen; Yongzhen Peng

Batch biosorption experiments were carried out for the removal of Acid Yellow 17 from aqueous solution using non-living aerobic granular sludge as an effective biosorbent. The effects of solution pH value, biosorbent dosage, initial Acid Yellow 17 concentration, NaCl concentration and temperature on the biosorption were investigated. The experimental results indicate that this process was highly dependent on pH value and the pH value of 2.0 was favorable. The Temkin isotherm was more applicable for describing the biosorption equilibrium at the whole concentration range than the Freundlich and Langmuir isotherm. The results of kinetics study show that the pseudo-second-order model fitted to the experimental data well. Both intraparticle diffusion and boundary layer diffusion might affect the biosorption rate. Thermodynamic studies demonstrate that the biosorption process was spontaneous and exothermic. The FTIR analysis before and after Acid Yellow 17 binding indicated that functional groups such as amine, hydroxyl, carboxyl and either on the non-living aerobic granular sludge would be the active binding sites for the biosorption of the studied dye. These results show that non-living aerobic granular sludge could be effectively used as a low-cost and alternative biosorbent for the removal of Acid Yellow 17 dye from wastewater.


Bioresource Technology | 2009

Effect of influent nutrient ratios and hydraulic retention time (HRT) on simultaneous phosphorus and nitrogen removal in a two-sludge sequencing batch reactor process

Yayi Wang; Yongzhen Peng; Tom Stephenson

A laboratory-scale anaerobic-anoxic/nitrification sequencing batch reactor (A(2)N-SBR) fed with domestic wastewater was operated to examine the effect of varying ratios of influent COD/P, COD/TN and TN/P on the nutrient removal. With the increased COD/P, the phosphorus removals exhibited an upward trend. The influent TN/P ratios had a positive linear correlation with the phosphorus removal efficiencies, mainly because nitrates act as electron acceptors for the phosphorus uptake in the A(2)N-SBR. Moreover, it was found that lower COD/TN ratio, e.g. 3.5, did not significantly weaken the phosphorus removal, though the nitrogen removal first decreased greatly. The optimal phosphorus and nitrogen removals of 94% and 91%, respectively were achieved with influent COD/P and COD/TN ratios of 19.9 and 9.9, respectively. Additionally, a real-time control strategy for A(2)N-SBR can be undertaken based on some characteristic points of pH, redox potential (ORP) and dissolved oxygen (DO) profiles in order to obtain the optimum hydraulic retention time (HRT) and improve the operating reliability.


Environmental Science & Technology | 2009

N2O production during nitrogen removal via nitrite from domestic wastewater: main sources and control method.

Qing Yang; Xiuhong Liu; Chengyao Peng; Shuying Wang; Hongwei Sun; Yongzhen Peng

Nitrite has been commonly recognized as an important factor causing N(2)O production, which weakened the advantages of nitrogen removal via nitrite. To reduce and control N(2)O production from wastewater treatment plants, both long-term and batch tests were carried out to investigate main sources and pathways of N(2)O production during nitrogen removal via nitrite from real domestic wastewater. The obtained results showed that N(2)O production during nitrogen removal via nitrite was 1.5 times as much as that during nitrogen removal via nitrate. It was further demonstrated that ammonia oxidization were main source of N(2)O production during nitrogen removal from domestic wastewater; whereas, almost no N(2)O was produced during nitrite oxidization and anoxic denitrification. N(2)O production during nitrogen removal via nitrite decreased about 50% by applying the step-feed SBR, due to the effective control of nitrite and ammonia, the precursors of N(2)O production. Therefore, the step-feed system is recommended as an effective method to reduce N(2)O production during nitrogen removal via nitrite from domestic wastewater.


Journal of Hazardous Materials | 2010

Short- and long-term effects of temperature on partial nitrification in a sequencing batch reactor treating domestic wastewater.

Jianhua Guo; Yongzhen Peng; Huijun Huang; Shuying Wang; Shijian Ge; Jingrong Zhang; Zhongwei Wang

Partial nitrification to nitrite has been frequently obtained at high temperatures, but has proved difficult to achieve at low temperatures when treating low strength domestic wastewater. In this study, the long-term effects of temperature on partial nitrification were investigated by operating a sequencing bath reactor with the use of aeration duration control. The specific ammonia oxidation rate decreased by 1.5 times with the temperature decreasing from 25 to 15 degrees C. However, low temperature did not deteriorate the stable partial nitrification performance. Nitrite accumulation ratio was always above 90%, even slightly higher (above 95%) at low temperatures. The nitrifying sludge accumulated with ammonia-oxidizing bacteria (AOB), but washout of nitrite-oxidizing bacteria (NOB) was used to determine the short-term effects of temperature on ammonia oxidation process. The ammonia oxidation rate depended more sensitively on lower temperatures; correspondingly the temperature coefficient theta was 1.172 from 5 to 20 degrees C, while theta was 1.062 from 20 to 35 degrees C. Moreover, the larger activation energy (111.5 kJ mol(-1)) was found at lower temperatures of 5-20 degrees C, whereas the smaller value (42.0 kJ mol(-1)) was observed at higher temperatures of 20-35 degrees C. These findings might be contributed to extend the applicability of the partial nitrification process in wastewater treatment plants operated under cold weather conditions. It is suggested that the selective enrichment of AOB as well as the washout of NOB be obtained by process control before making the biomass slowly adapt to low temperatures for achieving partial nitrification to nitrite at low temperatures.


Journal of Environmental Sciences-china | 2007

Denitrification potential enhancement by addition of external carbon sources in a pre-denitrification process

Yongzhen Peng; Yong Ma; Shuying Wang

The aim of this study is to investigate the denitrification potential enhancement by addition of external carbon sources and to estimate the denitrification potential for the predenitrification system using nitrate utilization rate (NUR) batch tests. It is shown that the denitrification potential can be substantially increased with the addition of three external carbon sources, i.e. methanol, ethanol, and acetate, and the denitrification rates of ethanol, acetate, and methanol reached up to 9.6, 12, and 3.2 mgN/(g VSS x h), respectively, while that of starch wastewater was only 0.74 mgN/(g VSS x h). By comparison, ethanol was found to be the best external carbon source. NUR batch tests with starch wastewater and waste ethanol were carried out. The denitrification potential increased from 5.6 to 16.5 mg NO3-N/L owing to waste ethanol addition. By means of NUR tests, the wastewater characteristics and kinetic parameters can be estimated, which are used to determine the denitrification potential of wastewater, to calculate the denitrification potential of the plant and to predict the nitrate effluent quality, as well as provide information for developing carbon dosage control strategy.

Collaboration


Dive into the Yongzhen Peng's collaboration.

Top Co-Authors

Avatar

Shuying Wang

Beijing University of Technology

View shared research outputs
Top Co-Authors

Avatar

Baikun Li

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Bin Ma

Beijing University of Technology

View shared research outputs
Top Co-Authors

Avatar

Liang Zhang

Beijing University of Technology

View shared research outputs
Top Co-Authors

Avatar

Qing Yang

Beijing University of Technology

View shared research outputs
Top Co-Authors

Avatar

Wei Zeng

Beijing University of Technology

View shared research outputs
Top Co-Authors

Avatar

Jianhua Guo

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Xiyao Li

Beijing University of Technology

View shared research outputs
Top Co-Authors

Avatar

Shijian Ge

Beijing University of Technology

View shared research outputs
Top Co-Authors

Avatar

Bo Wang

Beijing University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge