Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoo Gyeong Park is active.

Publication


Featured researches published by Yoo Gyeong Park.


International Journal of Molecular Sciences | 2014

Physiological and Proteomic Analysis in Chloroplasts of Solanum lycopersicum L. under Silicon Efficiency and Salinity Stress

Sowbiya Muneer; Yoo Gyeong Park; Abinaya Manivannan; Byoung Ryong Jeong

Tomato plants often grow in saline environments in Mediterranean countries where salt accumulation in the soil is a major abiotic stress that limits its productivity. However, silicon (Si) supplementation has been reported to improve tolerance against several forms of abiotic stress. The primary aim of our study was to investigate, using comparative physiological and proteomic approaches, salinity stress in chloroplasts of tomato under silicon supplementation. Tomato seedlings (Solanum lycopersicum L.) were grown in nutrient media in the presence or absence of NaCl and supplemented with silicon for 5 days. Salinity stress caused oxidative damage, followed by a decrease in silicon concentrations in the leaves of the tomato plants. However, supplementation with silicon had an overall protective effect against this stress. The major physiological parameters measured in our studies including total chlorophyll and carotenoid content were largely decreased under salinity stress, but were recovered in the presence of silicon. Insufficient levels of net-photosynthesis, transpiration and stomatal conductance were also largely improved by silicon supplementation. Proteomics analysis of chloroplasts analyzed by 2D-BN-PAGE (second-dimensional blue native polyacrylamide-gel electrophoresis) revealed a high sensitivity of multiprotein complex proteins (MCPs) such as photosystems I (PSI) and II (PSII) to the presence of saline. A significant reduction in cytochrome b6/f and the ATP-synthase complex was also alleviated by silicon during salinity stress, while the complex forms of light harvesting complex trimers and monomers (LHCs) were rapidly up-regulated. Our results suggest that silicon plays an important role in moderating damage to chloroplasts and their metabolism in saline environments. We therefore hypothesize that tomato plants have a greater capacity for tolerating saline stress through the improvement of photosynthetic metabolism and chloroplast proteome expression after silicon supplementation.


Horticulture Environment and Biotechnology | 2015

Silicon alleviates salt stress by modulating antioxidant enzyme activities in Dianthus caryophyllus ‘Tula’

Abinaya Manivannan; Yoo Gyeong Park; Sowbiya Muneer; Byoung Ryong Jeong

Although silicon (Si) is not considered as an essential element, it is beneficial to the plant growth. Its effect is more evident under abiotic and biotic stress conditions. The objective of this study is to investigate the role of Si on the in vitro growth and resistance to salt stress of Dianthus caryophyllus ‘Tula’. The experiment was designed as a factorial design with 0, 50, or 100 mg·L−1 of potassium silicate (K2SiO3) in combination with 0, 50, or 100 mM sodium chloride (NaCl). The treatment of 50 mg·L−1 Si improved the growth of plant. However, the treatment of Si at 100 mg·L−1 reduced the growth. Although NaCl retarded the growth, addition of Si along with NaCl to the culture medium mitigated the effect of NaCl. A primary defense line by Si to overcome the photosynthetic depression was apparent from the increased chlorophyll content in the Si + NaCl treatment as compared to the treatment of NaCl alone. Enhancement of growth and resistance to salinity by Si was thought to be due to the modulation in activity of antioxidant enzymes, such as superoxide dismutase, ascorbate peroxidase, guaiacol peroxidase, and catalase. Therefore, our results suggested that 50 mg·L−1 Si supplementation could be optimal for improved growth in vitro and enhanced resistance against salinity in D. caryophyllus ‘Tula’.


Horticulture Environment and Biotechnology | 2012

Light source and CO2 concentration affect growth and anthocyanin content of lettuce under controlled environment

Yoo Gyeong Park; Ji Eun Park; Seung Jae Hwang; Byoung Ryong Jeong

The effect of light source and CO2 concentration on the growth and anthocyanin content of lettuce (Lactuca sativa L. ‘Seonhong Jeokchukmyeon’) grown in growth chambers was examined. The plant was grown under 140 μmol· m−2·s−1 PPF provided by either cool white fluorescent lamps (F, the control), white (W) light emitting diodes (LEDs), or a 8:1:1 mixture of red, blue and white (RBW) LEDs. Carbon dioxide concentration of the atmosphere was maintained at either 350, 700, or 1,000 μmol·mol−1. The RBW treatment promoted vegetative growth of the shoot and root. Chlorophyll fluorescence (Fv/Fm) was not significantly affected by the light source and CO2 concentration. Total anthocyanin content of the plant supplied with 1,000 mol·mol−1 CO2 was the greatest in the F treatment. Photosynthetic rate significantly increased with the increasing CO2 concentration. These results suggested that the RBW which provided a wider spectrum of PAR and the highest CO2 concentration provided the most the suitable environment condition for vegetative growth of lettuce among the tested light sources. To obtain plants with even higher quality, especially having greater content of anthocyanin, however, more considerations on supplemental light source including white LED are necessary in terms of optimum intensity, photoperiod, and optimum ratios of mixing with other LEDs.


PLOS ONE | 2015

Proteomic Study Related to Vascular Connections in Watermelon Scions Grafted onto Bottle-Gourd Rootstock under Different Light Intensities

Sowbiya Muneer; Chung Ho Ko; Abinaya Manivnnan; Yoo Gyeong Park; Byoung Ryong Jeong

Although grafting is broadly used in the production of crops, no information is available about the proteins involved in vascular connections between rootstock and scion. Similarly, proteome changes under the light intensities widely used for grafted seedlings are of practical use. The objective of this study was to determine the proteome of vascular connections using watermelon (Citrullus vulgaris Schrad.) ‘Sambok Honey’ and ‘Speed’ as the scion and bottle gourd (Lagenaria siceraria Stanld.) ‘RS Dongjanggun’ as the rootstock grown under different light intensities (25, 50, 75 and 100 μmol m−2 s−1). Our proteomic analysis revealed 24 and 27 differentially expressed proteins in ‘Sambok Honey’ and ‘Speed’, respectively, under different light intensities. The identified proteins were largely involved in ion binding, amino acid metabolism, transcriptional regulation and defense response. The enhancement of ion-binding, transcriptional regulation, amino acid metabolism, and defense response proteins suggests a strengthening of the connection between the rootstock and scion under high light intensity. Indeed, the accumulation of key enzymes in the biological processes described above appears to play an important role in the vascular connections of grafted seedlings. Moreover, it appears that 100 μmol m−2 s−1 results in better protein expression responses in grafted seedlings.


Horticulture Environment and Biotechnology | 2013

Growth and anthocyanin concentration of Perilla frutescens var. acuta Kudo as affected by light source and DIF under controlled environment

Yoo Gyeong Park; Hye Jin Oh; Byoung Ryong Jeong

The effect of light source and DIF (difference between light and dark-period temperatures) on the growth and anthocyanin concentration of Perilla frutescens var. acuta Kudo grown in a growth chamber was examined. The plant was grown under 140 μmol·m−2·s−1 PPF provided by either cool white fluorescent lamps (FL, the control), white (W) light emitting diodes (LEDs), or a 8:1:1 mixture of red, blue and white (RBW) LEDs. Temperatures during the light-/dark-period were maintained at either 24/16 (+8 DIF), 22/18 (+4 DIF), or 20/20°C (0 DIF) with a daily mean temperature of 20°C in all treatments. Plant height increased in the FL as compared to the W and RBW LEDs treatments with +8 and +4 DIF. The RBW LEDs treatment promoted vegetative growth of the shoot and root. Chlorophyll fluorescence (Fv/Fm) was not significantly affected by the light source and DIF. Total anthocyanin concentration per leaf in the +8 DIF was higher in the RBW LEDs treatment than the other treatments. The results suggested that the RBW LEDs was the most suitable light source not only for vegetative growth, but also for the accumulation of anthocyanin under a controlled environment.


International Journal of Molecular Sciences | 2015

Morphogenesis, Flowering, and Gene Expression of Dendranthema grandiflorum in Response to Shift in Light Quality of Night Interruption

Yoo Gyeong Park; Sowbiya Muneer; Byoung Ryong Jeong

The impact of shifts in the spectral quality of light on morphogenesis, flowering, and photoperiodic gene expression during exposure to light quality of night interruption (NI) was investigated in Dendranthema grandiflorum. The circadian rhythms of plants grown in a closed walk-in growth chamber were interrupted at night for a total of 4 h, using light-emitting diodes with an intensity of 10 μmol·m−2·s−1 PPF. The light quality of the NI was shifted from one wavelength to another after the first 2 h. Light treatments consisting of all possible pairings of blue (B), red (R), far-red (Fr), and white (W) light were tested. Plants in the NI treatment groups exposed to Fr light grew larger than plants in other treatment groups. Of plants in NI treatment groups, those in the NI-WB treatment grew the least. In addition, the impact of shifts in the light quality of NI on leaf expansion was greater in treatment groups exposed to a combination of either B and R or R and W light, regardless of their order of supply. Flowering was observed in the NI-RB, NI-FrR, NI-BFr, NI-FrB, NI-WB, NI-FrW, NI-WFr, NI-WR, and SD (short-day) treatments, and was especially promoted in the NI-BFr and NI-FrB treatments. In a combined shift treatment of B and R or B and W light, the NI concluded with B light (NI-RB and NI-WB) treatment induced flowering. The transcriptional factors phyA, cry1 and FTL (FLOWERING LOCUS T) were positively affected, while phyB and AFT were negatively affected. In conclusion, morphogenesis, flowering, and transcriptional factors were all significantly affected either positively or negatively by shifts in the light quality of NI. The light quality of the first 2 h of NI affected neither morphogenesis nor flowering, while the light quality of the last 2 h of NI significantly affected both morphogenesis and flowering.


Journal of Chemistry | 2015

Binding Mode Investigation of Polyphenols from Scrophularia Targeting Human Aldose Reductase Using Molecular Docking and Molecular Dynamics Simulations

Abinaya Manivannan; Yoo Gyeong Park; Sugunadevi Sakkiah; Byoung Ryong Jeong

Aldose reductase (ALR2), a vital enzyme involved in polyol pathway, has befitted as a novel drug target in antidiabetes drug discovery process. In the present study, the binding mode and pharmacokinetic properties of potential polyphenolic compounds with reported aldose reductase inhibitory activity from the genus Scrophularia have been investigated. The human ALR2 enzyme (PDB ID: 2FZD) acted as the receptor in the current study. Among the compounds investigated, acacetin, a methoxy flavonoid, displayed the stable binding to the active site of ALR2 with least binding energy value. Molecular interaction analysis revealed that acacetin interrupts the proton donation mechanism, necessary for the catalytic activity of ALR2, by forming H-bond with Tyr48 (proton donor). In addition, acacetin also possessed favorable ADME properties and complies with Lipinski’s rule of 5 representing the possible drug-like nature compared to other polyphenols. Interestingly, the biological activity predictions also ranked acacetin with higher probability score for aldose reductase inhibition activity. Moreover, the molecular dynamics simulation of ALR2-acacetin complex was validated for the stability of ligand binding and the refined complex was used for generation of receptor-ligand pharmacophore model. Thus, the molecular insights of receptor-ligand interactions gained from the present study can be utilized for the development of novel aldose reductase inhibitors from Scrophularia.


Journal of Plant Growth Regulation | 2018

Red and Blue Light Emitting Diodes (LEDs) Participate in Mitigation of Hyperhydricity in In Vitro-Grown Carnation Genotypes (Dianthus Caryophyllus)

Sowbiya Muneer; Yoo Gyeong Park; Byoung Ryong Jeong

The present study was to determine the factors that can reduce hyperhydricity in in vitro-propagated carnation genotypes. The carnation genotypes (Green Beauty, Purple Beauty, and Inca Magic) were grown in vitro under normal and hyperhydric conditions in white fluorescent light (FL) in which half of the hyperhydric plants were grown in red and blue LEDs (light emitting diodes). It was observed that hyperhydricity leads to oxidative stress in terms of TBARS (thiobarbituric acid reactive substances) content, whereas stress was alleviated by R (red) and B (blue) LEDs. The multiprotein complex proteins such as ATPase (RCI + LHC1) PSII-core dimer, PSII-monomer/ATPs synthase, and PSII-monomer/cyt b6f had decreased levels in hyperhydric conditions grown in white FL; however, the expression level of these photosynthetic proteins was retained in hyperhydric plants grown in R and B LEDs. Moreover, the immunoblots of two photosynthetic proteins (PsaA and PsbA) and stress-responsive proteins such as superoxide dismutase, ascorbate peroxidase, and catalase showed recovery of hyperhydricity in carnation genotypes grown in R and B LEDs. Our present study signifies that red (R) and blue light (B) LEDs reduced the hyperhydricity to control levels by maintaining the composition of thylakoid proteins and antioxidative defense mechanisms in carnation genotypes.


International Journal of Molecular Sciences | 2016

Chemical Elicitor-Induced Modulation of Antioxidant Metabolism and Enhancement of Secondary Metabolite Accumulation in Cell Suspension Cultures of Scrophularia kakudensis Franch

Abinaya Manivannan; Yoo Gyeong Park; Byoung Ryong Jeong

Scrophularia kakudensis is an important medicinal plant with pharmaceutically valuable secondary metabolites. To develop a sustainable source of naturaceuticals with vital therapeutic importance, a cell suspension culture was established in S. kakudensis for the first time. Friable calli were induced from the leaf explants cultured on a Murashige and Skoog (MS) medium containing 3.0 mg·L−1 6-benzyladenine (BA) in a combination with 2 mg·L−1 2,4-dichlorophenoxy acetic acid (2,4-D). From the callus cultures, a cell suspension culture was initiated and the cellular differentiation was investigated. In addition, the effect of biotic elicitors such as methyl jasmonate (MeJa), salicylic acid (SA), and sodium nitroprusside (SNP) on the accumulation of secondary metabolites and antioxidant properties was demonstrated. Among the elicitors, the MeJa elicited the accumulation of total phenols, flavonoids, and acacetin, a flavonoid compound with multiple pharmaceutical values. Similarly, the higher concentrations of the MeJa significantly modulated the activities of antioxidant enzymes and enhanced the scavenging potentials of free radicals of cell suspension extracts. Overall, the outcomes of this study can be utilized for the large scale production of pharmaceutically important secondary metabolites from S. kakudensis through cell suspension cultures.


Journal of Plant Growth Regulation | 2017

Foliar or Subirrigation Silicon Supply Mitigates High Temperature Stress in Strawberry by Maintaining Photosynthetic and Stress-Responsive Proteins

Sowbiya Muneer; Yoo Gyeong Park; Soohoon Kim; Byoung Ryong Jeong

Silicon (Si) is the second most abundant element in the soil and is known to help in crop productivity. Si improves photosynthesis as well as remediates nutrient imbalances and abiotic stresses in plants. The impact and the importance of different sources, concentration, and supply of Si in improving the propagation of horticultural crops are limited. Thus, the present study focused on the supply, concentration, and source of Si on two important Korean strawberry cultivars ‘Sulhyang’ and ‘Maehyang’ under temperature stress. The high temperature (41 °C) resulted in oxidative stress in the form of H2O2 and O21− localizations in the -Si- and Si-treated plants as compared to 25 or 33 °C in both cultivars. However, Si, especially that from K2SiO3 source, had the ability to relieve the stress level. The immunoblots of two important photosynthetic proteins PsaA and PsbA showed decreased expression levels in the -Si plants under 41 °C temperature stress, whereas the expression levels were retained in the Si-supplied plants, particularly with K2SiO3 as the Si source. In both 25 and 33 °C, no changes in expressions of PsaA and PsbA were observed. Interestingly, the expression of three important stress-responsive proteins, superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT), were abundantly increased in the Si-treated plants under high-temperature stress (41 °C) and decreased in the –Si-treated plants except in those grown in 25 or 33 °C. The observed responses to silicon supply in high temperature stressed-plants indicate that Si, particularly in the form of K2SiO3, has a significant role in limiting the negative effects of high temperature stress by maintaining the photosynthetic proteins and stress-responsive proteins of the ascorbate glutathione defense mechanism. Moreover, these results also depict that Si application is a good way to maintain the health of plants at the propagation stage even under high temperatures of greenhouses.

Collaboration


Dive into the Yoo Gyeong Park's collaboration.

Top Co-Authors

Avatar

Byoung Ryong Jeong

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Sowbiya Muneer

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Ji Eun Park

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Seung Jae Hwang

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Abinaya Manivannan

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Chung Ho Ko

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Sang Bok Lee

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Hye Jin Oh

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Soohoon Kim

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Abinaya Manivnnan

Gyeongsang National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge