Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoon Pin Lim is active.

Publication


Featured researches published by Yoon Pin Lim.


Molecular & Cellular Proteomics | 2007

Differential Expression of Novel Tyrosine Kinase Substrates during Breast Cancer Development

Yunhao Chen; Lee Yee Choong; Qingsong Lin; Robin Philp; Chee Hong Wong; Boon Keong Ang; Yee Ling Tan; Marie Chiew Shia Loh; Choy Leong Hew; Nilesh Shah; Brian J. Druker; Poh Kuan Chong; Yoon Pin Lim

To identify novel tyrosine kinase substrates that have never been implicated in cancer, we studied the phosphoproteomic changes in the MCF10AT model of breast cancer progression using a combination of phosphotyrosyl affinity enrichment, iTRAQ™ technology, and LC-MS/MS. Using complementary MALDI- and ESI-based mass spectrometry, 57 unique proteins comprising tyrosine kinases, phosphatases, and other signaling proteins were detected to undergo differential phosphorylation during disease progression. Seven of these proteins (SPAG9, Toll-interacting protein (TOLLIP), WBP2, NSFL1C, SLC4A7, CYFIP1, and RPS2) were validated to be novel tyrosine kinase substrates. SPAG9, TOLLIP, WBP2, and NSFL1C were further proven to be authentic targets of epidermal growth factor signaling and Iressa (gefitinib). A closer examination revealed that the expression of SLC4A7, a bicarbonate transporter, was down-regulated in 64% of the 25 matched normal and tumor clinical samples. The expression of TOLLIP in clinical breast cancers was heterogeneous with 25% showing higher expression in tumor compared with normal tissues and 35% showing the reverse trend. Preliminary studies on SPAG9, on the other hand, did not show differential expression between normal and diseased states. This is the first time SLC4A7 and TOLLIP have been discovered as novel tyrosine kinase substrates that are also associated with human cancer development. Future molecular and functional studies will provide novel insights into the roles of TOLLIP and SLC4A7 in the molecular etiology of breast cancer.


Journal of Proteome Research | 2009

Novel breast cancer metastasis-associated proteins.

Jiapei Ho; Jacklyn-Wai-Fun Kong; Lee Yee Choong; Marie-Chiew-Shia Loh; Weiyi Toy; Poh Kuan Chong; Chee‐Hong Wong; Chow-Yin Wong; Nilesh Shah; Yoon Pin Lim

With the use of the breast cancer metastatic model, which comprises four isogenic cell lines, iTRAQ-based ESI-LC/MS/MS proteomics was employed to catalog protein expression changes as cancer cells acquire increasing metastatic potential. From more than 1000 proteins detected, 197 proteins, including drug-targetable kinases, phosphatases, proteases and transcription factors, displayed differential expression when cancer cells becomes more metastatic. Overall, the number of protein expression changes was evenly distributed across mildly ( approximately 30%), moderately ( approximately 40%) and aggressively ( approximately 30%) metastatic cancer cells. Some changes were found to be specific to one while others were required for two or more phenotypes. KEGG Orthology suggests major reprogramming in cell metabolism and to smaller extents in genetic and environmental information processing. Ten novel metastasis-associated proteins were identified and the iTRAQ-based expression profiles of 7 proteins were verified to be congruent with antibody-based methods. With the use of tissue microarrays comprising 50 matched cases of invasive and metastatic lesions, the expression profiles of SH3GLB1 and SUB1, SND1, TRIM28 were validated to be down- and up-regulated, respectively, during clinical progression of carcinoma in situ to invasive and metastatic carcinomas. Our study has unraveled proteome-wide molecular aberrations and potentially new players in breast cancer metastasis.


Expert Review of Proteomics | 2013

Recent advances in mass spectrometry: data independent analysis and hyper reaction monitoring

Kai Pong Law; Yoon Pin Lim

New mass spectrometry (MS) methods, collectively known as data independent analysis and hyper reaction monitoring, have recently emerged. These methods hold promises to address the shortcomings of data-dependent analysis and selected reaction monitoring (SRM) employed in shotgun and targeted proteomics, respectively. They allow MS analyses of all species in a complex sample indiscriminately, or permit SRM-like experiments conducted with full high-resolution product ion spectra, potentially leading to higher sequence coverage or analytical selectivity. These methods include MSE, all-ion fragmentation, Fourier transform-all reaction monitoring, SWATH Acquisition, multiplexed MS/MS, pseudo-SRM (pSRM) and parallel reaction monitoring (PRM). In this review, the strengths and pitfalls of these methods are discussed and illustrated with examples. In essence, the suitability of the use of each method is contingent on the biological questions posed. Although these methods do not fundamentally change the shape of proteomics, they are useful additional tools that should expedite biological discoveries.


Clinical Cancer Research | 2005

Mining the Tumor Phosphoproteome for Cancer Markers

Yoon Pin Lim

Despite decades of cancer research, mortality rates remain high largely due to the failure of early detection, poor understanding of the epidemiology of rational drug targets, and molecular etiology of human cancers. The discovery of disease markers promises to deliver some solutions to these formidable challenges. Gene and protein expression profiling through DNA microarray and proteomics have already made a tremendous effect in this area. However, protein/gene expression does not necessarily reflect protein activity, which is often regulated via post-translation modifications, of which phosphorylation is one of the most prominent. This is an important consideration because the activity of protein is a more relevant phenotype than its expression during pathogenesis. Tyrosine kinases represent a very important class of enzymes that are critical regulators of mitogenic and angiogenic signaling, hence attractive targets for anticancer drugs as exemplified by BCR-ABL and ErbB2. More than 50% of them are overexpressed or mutated resulting in a gain of function in various human cancers. In this review, we discuss the potential effect of phosphoproteins as cancer markers in cancer diagnosis and therapeutics. Phosphoproteomics strategies that might pave the way to high-throughput analysis for routine clinical applications are also described.


Journal of Biological Chemistry | 1996

Identification of p90, a Prominent Tyrosine-phosphorylated Protein in Fibroblast Growth Factor-stimulated Cells, as 80K-H

Kee Chuan Goh; Yoon Pin Lim; Siew Hwa Ong; Chia Bin Siak; Xinmin Cao; Yin Hwee Tan; Graeme R. Guy

Tyrosine phosphorylation of cellular proteins occurs rapidly upon treatment of fibroblasts with acidic or basic fibroblast growth factors (aFGF, bFGF), suggesting a role for protein phosphorylation in the FGF signaling pathway. Stimulation of Swiss 3T3 cells and MRC-5 fibroblasts with bFGF results in the tyrosine phosphorylation of several proteins, of which the most prominent has been designated as p90. The phosphorylation of p90 is observed within 30 s of treating the cells with FGF but not with other growth factors. Microsequencing of p90 resolved on two-dimensional polyacrylamide gel electrophoresis indicated an N-terminal amino acid sequence which corresponded to a protein previously named as 80K-H. Polyclonal antibodies raised against the predicted C terminus of 80K-H recognized p90 on all Western blots. p90 was found to bind specifically to GRB-2-glutathione S-transferase fusion protein and to be immunoreactive with 80K-H antibody. In addition, anti-phosphotyrosine antibodies immunoprecipitated 80K-H from cell lysates of FGF-stimulated but not from control fibroblasts. The biological function of 80K-H is yet unknown. However, from this study and a previous observation of the obligatory dependence of p90 phosphorylation on FGF receptor occupation, it appears that 80K-H is involved in FGF signaling.


Journal of Proteome Research | 2010

Cathepsin S Mediates Gastric Cancer Cell Migration and Invasion via a Putative Network of Metastasis-Associated Proteins

Yixuan Yang; Shen-Kiat Lim; Lee Yee Choong; Huiyin Lee; Yunhao Chen; Poh Kuan Chong; Hassan Ashktorab; Ting Ting Wang; Manuel Salto-Tellez; Khay Guan Yeoh; Yoon Pin Lim

Cancer progression is governed by multifaceted interactions of cancer cells with their microenvironment and one of these ways is through secreted compounds. Substances released by gastric cancer cells have not being profiled in a proteome-wide manner. ITRAQ-based tandem mass spectrometry was employed to quantify proteins secreted by HFE145 normal, MKN7 well-differentiated, and MKN45 poorly differentiated gastric cancer cell lines. The expression levels of 237 proteins were found to be significantly different between normal and cancer cells. Further examination of 16 gastric cell lines and 115 clinical samples validated the up-regulation of CTSS expression in gastric cancer. Silencing CTSS expression suppressed the migration and invasion of gastric cancer cells in vitro. Subsequent secretomics revealed that CTSS silencing resulted in changes in expression levels of 197 proteins, one-third of which are implicated in cellular movement. Proteome-wide comparative secretomes of normal and gastric cancer cells were produced that constitute a useful resource for gastric cancer research. CTSS was demonstrated to play novel roles in gastric cancer cell migration and invasion, putatively via a network of proteins associated with cell migration, invasion, or metastasis. Cathepsin S is member of a large group of extracellular proteases, which are attractive drug targets. The implicated role of CTSS in gastric cancer metastasis provides an opportunity to test existing compounds against CTSS for adjuvant therapy and/or treatment of metastatic gastric cancers.


Journal of Biological Chemistry | 1999

Tyrosine Phosphorylation of the Bcl-2-associated Protein BNIP-2 by Fibroblast Growth Factor Receptor-1 Prevents Its Binding to Cdc42GAP and Cdc42

Boon Chuan Low; Yoon Pin Lim; Jormay Lim; Esther Sook Miin Wong; Graeme R. Guy

Fibroblast growth factor (FGF) receptor tyrosine kinases are involved in the regulation of cell growth, development, and differentiation in a variety of tissues. To isolate potential signaling molecules in the FGF signaling pathway, we have initiated a yeast two-hybrid screening using the cytosolic domain of FGF receptor-1 (Flg). Here we report the identification of BNIP-2, a previously cloned Bcl-2- and adenovirus E1B-associated protein, as a putative substrate of the receptor. When cotransfected in 293T cells, BNIP-2 was tyrosine-phosphorylated via Flg, but their interaction was transient and could only be seen by “capture” experiments with catalytically inert kinase mutants. When responsive cells were challenged with basic FGF, endogenous tyrosine-phosphorylated BNIP-2 could be precipitated with a BNIP-2 antibody. In addition, the recombinant BNIP-2 expressed in bacteria could be phosphorylated by active Flg in vitro. BNIP-2 shares a region of homology with the noncatalytic domain of Cdc42GAP, a GTPase-activating protein for the small GTP-binding molecule, Cdc42. We show here that BNIP-2 and Cdc42GAP could directly bind to each other and they also compete for the binding to the same target, Cdc42. Unexpectedly, BNIP-2, either produced as a bacterial recombinant protein or expressed in 293T cells, could stimulate the intrinsic GTPase activity of Cdc42. In all cases, tyrosine phosphorylation of BNIP-2 severely impaired its association with Cdc42GAP and its induced GTPase-activating protein-like activity toward Cdc42. These findings should allow us to further characterize the integration of signaling between receptor tyrosine kinases, GTP-binding molecules, and apoptotic pathways.


Proteomics | 2010

Upregulation of plasma C9 protein in gastric cancer patients

Poh Kuan Chong; Huiyin Lee; Marie Chiew Shia Loh; Lee Yee Choong; Qingsong Lin; Jimmy So; Khong Hee Lim; Ross A. Soo; Wei Peng Yong; Siew Pang Chan; Duane T. Smoot; Hassan Ashktorab; Khay Guan Yeoh; Yoon Pin Lim

Gastric cancer is one of the leading causes of cancer‐related deaths worldwide. Current biomarkers used in the clinic do not have sufficient sensitivity for gastric cancer detection. To discover new and better biomarkers, protein profiling on plasma samples from 25 normal, 15 early‐stage and 21 late‐stage cancer was performed using an iTRAQ‐LC‐MS/MS approach. The level of C9 protein was found to be significantly higher in gastric cancer compared with normal subjects. Immunoblotting data revealed a congruent trend with iTRAQ results. The discriminatory power of C9 between normal and cancer states was not due to inter‐patient variations and was independent from gastritis and Helicobacter pylori status of the patients. C9 overexpression could also be detected in a panel of gastric cancer cell lines and their conditioned media compared with normal cells, implying that higher C9 levels in plasma of cancer patients could be attributed to the presence of gastric tumor. A subsequent blind test study on a total of 119 plasma samples showed that the sensitivity of C9 could be as high as 90% at a specificity of 74%. Hence, C9 is a potentially useful biomarker for gastric cancer detection.


The EMBO Journal | 2012

Structure of a novel phosphotyrosine-binding domain in Hakai that targets E-cadherin

Manjeet Mukherjee; Soah Yee Chow; Permeen Yusoff; Jayaraman Seetharaman; Cherlyn Ng; Saravanan Sinniah; Xiao Woon Koh; Nur Farehan M Asgar; Dan Li; Daniel Yim; Rebecca A. Jackson; Jingxi Yew; Jingru Qian; Audrey Iyu; Yoon Pin Lim; Xingding Zhou; Siu Kwan Sze; Graeme R. Guy; J. Sivaraman

Phosphotyrosine‐binding domains, typified by the SH2 (Src homology 2) and PTB domains, are critical upstream components of signal transduction pathways. The E3 ubiquitin ligase Hakai targets tyrosine‐phosphorylated E‐cadherin via an uncharacterized domain. In this study, the crystal structure of Hakai (amino acids 106–206) revealed that it forms an atypical, zinc‐coordinated homodimer by utilizing residues from the phosphotyrosine‐binding domain of two Hakai monomers. Hakai dimerization allows the formation of a phosphotyrosine‐binding pocket that recognizes specific phosphorylated tyrosines and flanking acidic amino acids of Src substrates, such as E‐cadherin, cortactin and DOK1. NMR and mutational analysis identified the Hakai residues required for target binding within the binding pocket, now named the HYB domain. ZNF645 also possesses a HYB domain but demonstrates different target specificities. The HYB domain is structurally different from other phosphotyrosine‐binding domains and is a potential drug target due to its novel structural features.


Journal of Proteome Research | 2010

ITIH3 Is a Potential Biomarker for Early Detection of Gastric Cancer

Poh Kuan Chong; Huiyin Lee; Jianbiao Zhou; Shaw Cheng Liu; Marie Chiew Shia Loh; Ting Ting Wang; Siew Pang Chan; Duane T. Smoot; Hassan Ashktorab; Jimmy So; Khong Hee Lim; Khay Guan Yeoh; Yoon Pin Lim

Gastric cancer has one of the highest morbidities and mortalities worldwide. Early detection is key measure to improve the outcome of gastric cancer patients. In our efforts to identify potential markers for gastric cancer detection, we coupled xenotransplantation mouse model with a plasma proteomic approach. MKN45 gastric cancer cells were subcutaneously injected into nude mice and plasma samples from mice bearing different sizes of tumors were collected and subjected to iTRAQ and mass spectrometry analysis. ITIH3 protein was found to be more highly expressed in plasma of tumor bearing mice compared to control. Subsequent screening of ITIH3 expression in 167 clinical plasma samples, including 83 cancer-free subjects and 84 gastric cancer patients, revealed higher ITIH3 level in the plasma of gastric cancer patients. A receiver operating characteristics (ROC) curve estimated a maximal sensitivity of 96% at 66% specificity for ITIH3 in gastric cancer detection. In addition, plasma from early stage gastric cancer patient has significantly (p < 0.001) higher level of ITIH3 compared to that from noncancer subject. Our data suggest that ITIH3 may be a useful biomarker for early detection of gastric cancer.

Collaboration


Dive into the Yoon Pin Lim's collaboration.

Top Co-Authors

Avatar

Lee Yee Choong

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Poh Kuan Chong

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yunhao Chen

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Graeme R. Guy

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Huiyin Lee

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Khay Guan Yeoh

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nilesh Shah

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Qingsong Lin

National University of Singapore

View shared research outputs
Researchain Logo
Decentralizing Knowledge