Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoon Yee Then is active.

Publication


Featured researches published by Yoon Yee Then.


Molecules | 2014

Epoxidized Vegetable Oils Plasticized Poly(lactic acid) Biocomposites: Mechanical, Thermal and Morphology Properties

Buong Woei Chieng; Nor Azowa Ibrahim; Yoon Yee Then; Yuet Ying Loo

Plasticized poly(lactic acid) PLA with epoxidized vegetable oils (EVO) were prepared using a melt blending method to improve the ductility of PLA. The plasticization of the PLA with EVO lowers the Tg as well as cold-crystallization temperature. The tensile properties demonstrated that the addition of EVO to PLA led to an increase of elongation at break, but a decrease of tensile modulus. Plasticized PLA showed improvement in the elongation at break by 2058% and 4060% with the addition of 5 wt % epoxidized palm oil (EPO) and mixture of epoxidized palm oil and soybean oil (EPSO), respectively. An increase in the tensile strength was also observed in the plasticized PLA with 1 wt % EPO and EPSO. The use of EVO increases the mobility of the polymeric chains, thereby improving the flexibility and plastic deformation of PLA. The SEM micrograph of the plasticized PLA showed good compatible morphologies without voids resulting from good interfacial adhesion between PLA and EVO. Based on the results of this study, EVO may be used as an environmentally friendly plasticizer that can improve the overall properties of PLA.


The Scientific World Journal | 2014

Preparation and characterization of polyhydroxybutyrate/polycaprolactone nanocomposites.

Cha Ping Liau; Mansor Bin Ahmad; Kamyar Shameli; Wan Md Zin Wan Yunus; Nor Azowa Ibrahim; Norhazlin Zainuddin; Yoon Yee Then

Polyhydroxybutyrate (PHB)/polycaprolactone (PCL)/stearate Mg-Al layered double hydroxide (LDH) nanocomposites were prepared via solution casting intercalation method. Coprecipitation method was used to prepare the anionic clay Mg-Al LDH from nitrate salt solution. Modification of nitrate anions by stearate anions between the LDH layers via ion exchange reaction. FTIR spectra showed the presence of carboxylic acid (COOH) group which indicates that stearate anions were successfully intercalated into the Mg-Al LDH. The formation of nanocomposites only involves physical interaction as there are no new functional groups or new bonding formed. X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicated that the mixtures of nanocomposites are intercalated and exfoliated types. XRD results showed increasing of basal spacing from 8.66 to 32.97 Å in modified stearate Mg-Al LDH, and TEM results revealed that the stearate Mg-Al LDH layers are homogeneously distributed in the PHB/PCL polymer blends matrix. Enhancement in 300% elongation at break and 66% tensile strength in the presence of 1.0 wt % of the stearate Mg-Al LDH as compare with PHB/PCL blends. Scanning electron microscopy (SEM) proved that clay improves compatibility between polymer matrix and the best ratio 80PHB/20PCL/1stearate Mg-Al LDH surface is well dispersed and stretched before it breaks.


International Journal of Polymer Science | 2014

Enhancement of Mechanical and Dynamic Mechanical Properties of Hydrophilic Nanoclay Reinforced Polylactic Acid/Polycaprolactone/Oil Palm Mesocarp Fiber Hybrid Composites

Chern Chiet Eng; Nor Azowa Ibrahim; Norhazlin Zainuddin; Hidayah Ariffin; Wan Md Zin Wan Yunus; Yoon Yee Then

In previous studies, the effect of the addition of 1 wt% hydrophilic nanoclay on polylactic acid (PLA)/polycaprolactone (PCL)/oil palm mesocarp fiber (OPMF) biocomposites was investigated by tensile properties, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The current studies focus on the effect of addition of 1 wt% hydrophilic nanoclay on mechanical (flexural and impact properties) and dynamic mechanical properties of composites. The composites were characterized by the Fourier transform infrared spectroscopy (FTIR) and dynamic mechanical analysis (DMA). FTIR spectra show that peak shifting occurs when 1 wt% hydrophilic nanoclay was added to composites. The addition of 1 wt% hydrophilic nanoclay successfully improves the flexural properties and impact resistance of the biocomposites. The storage modulus of biocomposites was decreased when nanoclay was added which indicates that the stiffness of biocomposites was reduced. The loss modulus curve shows that the addition of nanoclay shift two tg in composites become closer to each other which indicates that the incorporation of nanoclay slightly compatibilizes the biocomposites. Tan δ indicated that hybrid composites dissipate less energy compared to biocomposites indicate that addition of clay to biocomposites improves fiber/matrix adhesion. Water sorption test shows that the addition of nanoclay enhances water resistance of composites.


International Journal of Molecular Sciences | 2014

The Influence of Green Surface Modification of Oil Palm Mesocarp Fiber by Superheated Steam on the Mechanical Properties and Dimensional Stability of Oil Palm Mesocarp Fiber/Poly(butylene succinate) Biocomposite

Yoon Yee Then; Nor Azowa Ibrahim; Norhazlin Zainuddin; Hidayah Ariffin; Wan Md Zin Wan Yunus; Buong Woei Chieng

In this paper, superheated steam (SHS) was used as cost effective and green processing technique to modify oil palm mesocarp fiber (OPMF) for biocomposite applications. The purpose of this modification was to promote the adhesion between fiber and thermoplastic. The modification was carried out in a SHS oven at various temperature (200–230 °C) and time (30–120 min) under normal atmospheric pressure. The biocomposites from SHS-treated OPMFs and poly(butylene succinate) (PBS) at a weight ratio of 70:30 were prepared by melt blending technique. The mechanical properties and dimensional stability of the biocomposites were evaluated. This study showed that the SHS treatment increased the roughness of the fiber surface due to the removal of surface impurities and hemicellulose. The tensile, flexural and impact properties, as well as dimensional stability of the biocomposites were markedly enhanced by the presence of SHS-treated OPMF. Scanning electron microscopy analysis showed improvement of interfacial adhesion between PBS and SHS-treated OPMF. This work demonstrated that SHS could be used as an eco-friendly and sustainable processing method for modification of OPMF in biocomposite fabrication.


International Journal of Polymer Science | 2013

Oil Palm Mesocarp Fiber as New Lignocellulosic Material for Fabrication of Polymer/Fiber Biocomposites

Yoon Yee Then; Nor Azowa Ibrahim; Norhazlin Zainuddin; Hidayah Ariffin; Wan Md Zin Wan Yunus

New biocomposites consisting of poly (butylene succinate) (PBS) and various content (0–70 wt%) of oil palm mesocarp fiber (OPMF) or oil palm empty fruit bunch fiber (OPEFBF) were fabricated by melt blending and subsequently hotpress moulding. The tensile, flexural, and impact properties of those biocomposites were evaluated and compared. Enhancement of flexural modulus of 200 or 150% was observed with PBS biocomposite loaded with 70 wt% of OPMF or OPEFBF. PBS/OPMF biocomposites exhibited higher values of tensile, flexural and impact strengths, and tensile and flexural moduli than those of PBS/OPEFBF biocomposites. These results indicated that OPMF feature better reinforcing agent for PBS as compared to that of OPEFBF.


Indian Journal of Materials Science | 2013

Enhancement of Mechanical and Thermal Properties of Polylactic Acid/Polycaprolactone Blends by Hydrophilic Nanoclay

Chern Chiet Eng; Nor Azowa Ibrahim; Norhazlin Zainuddin; Hidayah Ariffin; Wan Md Zin Wan Yunus; Yoon Yee Then; Cher Chean Teh

The effects of hydrophilic nanoclay, Nanomer PGV, on mechanical properties of Polylactic Acid (PLA)/Polycaprolactone (PCL) blends were investigated and compared with hydrophobic clay, Montmorillonite K10. The PLA/PCL/clay composites were prepared by melt intercalation technique and the composites were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Dynamic Mechanical Analysis (DMA), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM). FTIR spectra indicated that formation of hydrogen bond between hydrophilic clay with the matrix. XRD results show that shifting of basal spacing when clay incorporated into polymer matrix. TEM micrographs reveal the formation of agglomerate in the composites. Based on mechanical properties results, addition of clay Nanomer PGV significantly enhances the flexibility of PLA/PCL blends about 136.26%. TGA showed that the presence of clay improve thermal stability of blends. DMA show the addition of clay increase storage modulus and the presence of clay Nanomer PGV slightly shift two of blends become closer suggest that the presence of clay slightly compatibilizer the PLA/PCL blends. SEM micrographs revealed that presence of Nanomer PGV in blends influence the miscibility of the blends. The PLA/PCL blends become more homogeneous and consist of single phase morphology.


Polymers | 2017

Isolation and Characterization of Cellulose Nanocrystals from Oil Palm Mesocarp Fiber

Buong Woei Chieng; Syn Lee; Nor Azowa Ibrahim; Yoon Yee Then; Yuet Ying Loo

The aim was to explore the utilization of oil palm mesocarp fiber (OPMF) as a source for the production of cellulose nanocrystals (CNC). OPMF was first treated with alkali and then bleached before the production of CNC by acid hydrolysis (H2SO4). The produced materials were characterized using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), a scanning electron microscope (SEM) and a transmission electron microscope (TEM). It was proven that acid hydrolysis can increase the crystallinity of bleached OPMF and reduce the dimension of cellulose to nano scale. Changes in the peaks of the FTIR spectrum at 2852 (C-H stretching), 1732 (C=O stretching) and 1234 cm−1 (C-O stretching) indicated that the alkali treatment completely removed hemicelluloses and lignin from the fiber surface. This can be seen from the thermogram obtained from the TGA characterization. Morphological characterization clearly showed the formation of rod-shaped CNCs. The promising results prove that OPMF is a valuable source for the production of CNC.


Polymers | 2017

Epoxidized Jatropha Oil as a Sustainable Plasticizer to Poly(lactic Acid)

Buong Woei Chieng; Nor Azowa Ibrahim; Yoon Yee Then; Yuet Ying Loo

A renewable resource, epoxidized jatropha oil (EJO), was used as a green plasticizer and added to poly(lactic acid) (PLA). EJO was compounded into PLA at different contents. The addition of 3 wt % EJO to the PLA demonstrates significant improvement in flexibility, which leads to a percentage increase of about 7000% in elongation at break. This tensile result was confirmed by surface morphology analysis with clear proof of plastic deformation in EJO-plasticized PLA. EJO imparts a good heat stabilization effect. Thermal stability of PLA was enhanced upon addition of EJO, which is due to their good interaction and plasticizer dispersion within the PLA matrix. This EJO-plasticized PLA has wide applications in various industries, such as packaging of food and non-food products.


Polymers | 2017

Effect of Maleic Anhydride-Modified Poly(lactic acid) on the Properties of Its Hybrid Fiber Biocomposites

Abubakar Umar Birnin-Yauri; Nor Azowa Ibrahim; Norhazlin Zainuddin; Khalina Abdan; Yoon Yee Then; Buong Woei Chieng

This work investigated the effect of maleic anhydride (MA)-modified poly(lactic acid) (PLA), which is melt-blended with different untreated and aqueous borax (BR)-treated hybrid oil palm empty fruit bunch fibers (EFBF)/Kenaf core fibers (KCF), and compression-molded into corresponding hybrid biocomposites. These hybrid systems includes BR-treated EFBF/BR-treated KCF reinforced MA-modified PLA i.e., BR(EFBF-KCF)-MAPLA, BR-treated EFBF/BR-treated KCF reinforced unmodified PLA i.e., BR(EFBF-KCF)-PLA, untreated EFBF/untreated KCF reinforced MA-modified PLA i.e., EFBF-KCF-MAPLA, and untreated EFBF/untreated KCF reinforced unmodified PLA i.e., EFBF-KCF-PLA respectively. Characterizations of the hybrid systems revealed that optimal mechanical, physical, morphological, thermal and dynamic mechanical properties were provided by the BR(EFBF-KCF)-MAPLA, resulting from improved interface adhesion, consequent of the synergistic influence of BR treatment of natural fibers, and the compatibilization effect provided by the MA-modified PLA. The grafting degree and efficiency of MA onto the PLA backbone was appreciable, as indicated by direct titration, and through monitoring using Fourier Transform Infrared Spectroscopy (FTIR); thus the MA-modified PLA facilitated the formation of strong interface adhesion with the BR-treated hybrid fibers. The BR(EFBF-KCF)-MAPLA showed promising properties for usage as a bio-inspired, and sustainable alternative fiberboard article.


Materials Science Forum | 2016

Enhancement of Tensile Properties of Surface Treated Oil Palm Mesocarp Fiber/Poly(Butylene Succinate) Biocomposite by (3-Aminopropyl)Trimethoxysilane

Yoon Yee Then; Ibrahim Nor Azowa; Norhazlin Zainuddin; Buong Woei Chieng; Chern Chiet Eng; Hidayah Ariffin; Wan Yunus Wan Md Zin

The issue related to relatively poor interfacial adhesion between hydrophilic natural fiber and hydrophobic thermoplastic remain as an obstacle in natural fiber/thermoplastic biocomposites. Consequently, surface treatment of fiber is of important to impart adhesion. The present work used consecutive superheated steam-alkali treatment to treat the oil palm mesocarp fiber (OPMF) prior to biocomposite fabrication. The biocomposites made up of 70 wt% treated OPMF and 30 wt% poly (butylene succinate) (PBS) were prepared by melt blending technique in a Brabender internal mixer followed by hot-press moulding into 1 mm sheets. A silane coupling agent of (3-aminopropyl) trimethoxysilane (APTMS) was also added to the biocomposite during the process of compounding to promote interfacial adhesion and enhance the properties of biocomposites. The results showed that the biocomposite containing 2 wt% APTMS showed maximum enhancement in tensile strength (89%), tensile modulus (812%) and elongation at break (52%) in comparison to that of untreated OPMF/PBS biocomposite. The SEM observation of the tensile fracture surface revealed that APTMS improved the interfacial adhesion between treated OPMF and PBS. It can be deduced that the presence of APTMS can improve the adhesion between hydrophilic fiber and hydrophobic thermoplastic, and thus increased the tensile properties of the biocomposite.

Collaboration


Dive into the Yoon Yee Then's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wan Md Zin Wan Yunus

National Defence University of Malaysia

View shared research outputs
Top Co-Authors

Avatar

Hidayah Ariffin

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar

Yuet Ying Loo

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar

Chern Chiet Eng

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar

Abubakar Umar Birnin-Yauri

University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Kamyar Shameli

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar

Khalina Abdan

Universiti Putra Malaysia

View shared research outputs
Researchain Logo
Decentralizing Knowledge