Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoonmyung Lee is active.

Publication


Featured researches published by Yoonmyung Lee.


symposium on vlsi circuits | 2008

The Phoenix Processor: A 30pW platform for sensor applications

Mingoo Seok; Scott Hanson; Yu Shiang Lin; Zhiyoong Foo; Daeyeon Kim; Yoonmyung Lee; Nurrachman Liu; Dennis Sylvester; David T. Blaauw

An integrated platform for sensor applications, called the Phoenix Processor, is implemented in a carefully-selected 0.18 mum process with an area of 915 times 915 mum2, making on-die battery integration feasible. Phoenix uses a comprehensive sleep strategy with a unique power gating approach, an event-driven CPU with compact ISA, data memory compression, a custom low leakage memory cell, and adaptive leakage management in data memory. Measurements show that Phoenix consumes 29.6 pW in sleep mode and 2.8 pJ/cycle in active mode.


IEEE Journal of Solid-state Circuits | 2009

A Low-Voltage Processor for Sensing Applications With Picowatt Standby Mode

Scott Hanson; Mingoo Seok; Yu Shiang Lin; Zhi Yoong Foo; Daeyeon Kim; Yoonmyung Lee; Nurrachman Liu; Dennis Sylvester; David T. Blaauw

Recent progress in ultra-low-power circuit design is creating new opportunities for cubic millimeter computing. Robust low-voltage operation has reduced active mode power consumption considerably, but standby mode power consumption has received relatively little attention from low-voltage designers. In this work, we describe a low-voltage processor called the Phoenix Processor that has been designed at the device, circuit, and architecture levels to minimize standby power. A test chip has been implemented in a carefully selected 0.18 mum process in an area of only 915 times 915 mum2. Measurements show that Phoenix consumes 35.4 pW in standby mode and 226 nW in active mode.


IEEE Journal of Solid-state Circuits | 2013

A Modular 1 mm

Yoonmyung Lee; Suyoung Bang; Inhee Lee; Yejoong Kim; Gyouho Kim; Mohammad Hassan Ghaed; Pat Pannuto; Prabal Dutta; Dennis Sylvester; David T. Blaauw

A 1.0 mm3 general-purpose sensor node platform with heterogeneous multi-layer structure is proposed. The sensor platform benefits from modularity by allowing the addition/removal of IC layers. A new low power I2C interface is introduced for energy efficient inter-layer communication with compatibility to commercial I2C protocols. A self-adapting power management unit is proposed for efficient battery voltage down conversion for wide range of battery voltages and load current. The power management unit also adapts itself by monitoring energy harvesting conditions and harvesting sources and is capable of harvesting from solar, thermal and microbial fuel cells. An optical wakeup receiver is proposed for sensor node programming and synchronization with 228 pW standby power. The system also includes two processors, timer, temperature sensor, and low-power imager. Standby power of the system is 11 nW.


international solid-state circuits conference | 2012

^{3}

Yoonmyung Lee; Gyouho Kim; Suyoung Bang; Yejoong Kim; Inhee Lee; Prabal Dutta; Dennis Sylvester; David T. Blaauw

Wireless sensor nodes have many compelling applications such as smart buildings, medical implants, and surveillance systems. However, existing devices are bulky, measuring >;1cm3, and they are hampered by short lifetimes and fail to realize the “smart dust” vision of [1]. Smart dust requires a mm3-scale, wireless sensor node with perpetual energy harvesting. Recently two application-specific implantable microsystems [2][3] demonstrated the potential of a mm3-scale system in medical applications. However, [3] is not programmable and [2] lacks a method for re-programming or re-synchronizing once encapsulated. Other practical issues remain unaddressed, such as a means to protect the battery during the time period between system assembly and deployment and the need for flexible design to enable use in multiple application domains.


international solid-state circuits conference | 2012

Die-Stacked Sensing Platform With Low Power I

David Fick; Ronald G. Dreslinski; Bharan Giridhar; Gyouho Kim; Sangwon Seo; Matthew Fojtik; Sudhir Satpathy; Yoonmyung Lee; Daeyeon Kim; Nurrachman Liu; Michael Wieckowski; Gregory K. Chen; Trevor N. Mudge; Dennis Sylvester; David T. Blaauw

Recent high performance IC design has been dominated by power density constraints. 3D integration increases device density even further, and these devices will not be usable without viable strategies to reduce power consumption. This paper proposes the use of near-threshold computing (NTC) to address this issue in a stacked 3D system. In NTC, cores are operated near the threshold voltage (~200mV above Vth) to optimally balance power and performance [1]. In Centip3De, we operate cores at 650mV, as opposed to the wear-out limited supply voltage of 1.5V. This improves measured energy efficiency by 5.1×. The dramatically lower power consumption of NTC makes it an attractive match for 3D design, which has limited power dissipation capabilities, but also has improved innate power and performance compared to 2D design.


international symposium on low power electronics and design | 2009

^{2}

Daeyeon Kim; Yoonmyung Lee; J. Cai; Isaac Lauer; Leland Chang; Steven J. Koester; Dennis Sylvester; David T. Blaauw

The theoretical lower limit of subthreshold swing in MOSFETs (60 mV/decade) significantly restricts low voltage operation since it results in a low ON to OFF current ratio at low supply voltages. This paper investigates extremely-low power circuits based on new Si/SiGe HEterojunction Tunneling Transistors (HETTs) that have subthreshold swing < 60 mV/decade. Device characteristics as determined through Technology Computer Aided Design (TCAD) tools are used to develop a Verilog-A device model to simulate and evaluate a range of HETT-based circuits. We show that a HETT-based ring oscillator (RO) shows a 9--19X reduction in dynamic power compared to a CMOS RO. We also explore two key differences between HETTs and traditional MOSFETs, namely asymmetric current flow and increased Miller capacitance, analyzing their effect on circuit behavior and proposing methods to address them. Finally, HETT characteristics have the most dramatic impact on SRAM operation and hence we propose a novel 7-transistor HETT-based SRAM cell topology to overcome, and take advantage of, the asymmetric current flow. This new HETT SRAM design achieves 7-37X reduction in leakage power compared to CMOS.


IEEE Transactions on Circuits and Systems | 2013

C Inter-Die Communication and Multi-Modal Energy Harvesting

Mohammad Hassan Ghaed; Gregory K. Chen; Razi-ul Haque; Michael Wieckowski; Yejoong Kim; Gyouho Kim; Yoonmyung Lee; Inhee Lee; David Fick; Daeyeon Kim; Mingoo Seok; Kensall D. Wise; David T. Blaauw; Dennis Sylvester

Glaucoma is the leading cause of blindness, affecting 67 million people worldwide. The disease damages the optic nerve due to elevated intraocular pressure (IOP) and can cause complete vision loss if untreated. IOP is commonly assessed using a single tonometric measurement, which provides a limited view since IOP fluctuates with circadian rhythms and physical activity. Continuous measurement can be achieved with an implanted monitor to improve treatment regiments, assess patient compliance to medication schedules, and prevent unnecessary vision loss. The most suitable implantation location is the anterior chamber of the eye, which is surgically accessible and out of the field of vision. The desired IOP monitor (IOPM) volume is limited to 1.5mm3 (0.5x1.5x2mm3) by the size of a self-healing incision, curvature of the cornea, and dilation of the pupil.


IEEE Journal of Solid-state Circuits | 2014

A modular 1mm 3 die-stacked sensing platform with optical communication and multi-modal energy harvesting

Seokhyeon Jeong; Zhiyoong Foo; Yoonmyung Lee; Jae-Yoon Sim; David T. Blaauw; Dennis Sylvester

We propose a fully-integrated temperature sensor for battery-operated, ultra-low power microsystems. Sensor operation is based on temperature independent/dependent current sources that are used with oscillators and counters to generate a digital temperature code. A conventional approach to generate these currents is to drop a temperature sensitive voltage across a resistor. Since a large resistance is required to achieve nWs of power consumption with typical voltage levels (100 s of mV to 1 V), we introduce a new sensing element that outputs only 75 mV to save both power and area. The sensor is implemented in 0.18 μm CMOS and occupies 0.09 mm 2 while consuming 71 nW. After 2-point calibration, an inaccuracy of + 1.5°C/-1.4°C is achieved across 0 °C to 100 °C. With a conversion time of 30 ms, 0.3 °C (rms) resolution is achieved. The sensor does not require any external references and consumes 2.2 nJ per conversion. The sensor is integrated into a wireless sensor node to demonstrate its operation at a system level.


international solid-state circuits conference | 2014

Centip3De: A 3930DMIPS/W configurable near-threshold 3D stacked system with 64 ARM Cortex-M3 cores

Wanyeong Jung; Sechang Oh; Suyoung Bang; Yoonmyung Lee; Dennis Sylvester; David T. Blaauw

Recent advances in low-power circuits have enabled mm-scale wireless systems [1] for wireless sensor networks and implantable devices, among other applications. Energy harvesting is an attractive way to power such systems due to limited energy capacity of batteries at these form factors. However, the same size limitation restricts the amount of harvested power, which can be as low as 10s of nW for mm-scale photovoltaic cells in indoor conditions. Efficient DC-DC up-conversion at such low power levels (for battery charging) is extremely challenging and has not yet been demonstrated.


symposium on vlsi circuits | 2014

Low power circuit design based on heterojunction tunneling transistors (HETTs)

Gyouho Kim; Yoonmyung Lee; Zhiyoong Foo; Pat Pannuto; Ye-Sheng Kuo; Benjamin P. Kempke; Mohammad Hassan Ghaed; Suyoung Bang; Inhee Lee; Yejoong Kim; Seokhyeon Jeong; Prabal Dutta; Dennis Sylvester; David T. Blaauw

We present a 2×4×4mm3 imaging system complete with optics, wireless communication, battery, power management, solar harvesting, processor and memory. The system features a 160×160 resolution CMOS image sensor with 304nW continuous in-pixel motion detection mode. System components are fabricated in five different IC layers and die-stacked for minimal form factor. Photovoltaic (PV) cells face the opposite direction of the imager for optimal illumination and generate 456nW at 10klux to enable energy autonomous system operation.

Collaboration


Dive into the Yoonmyung Lee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gyouho Kim

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Yejoong Kim

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Inhee Lee

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daeyeon Kim

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Prabal Dutta

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge