Yorick Gitton
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yorick Gitton.
Development | 2005
Verónica Palma; Daniel A. Lim; Nadia Dahmane; Pilar Sánchez; Thomas C. Brionne; Claudia D. Herzberg; Yorick Gitton; Alan Carleton; Arturo Alvarez-Buylla; Ariel Ruiz i Altaba
Sonic hedgehog (Shh) signaling controls many aspects of ontogeny, orchestrating congruent growth and patterning. During brain development, Shh regulates early ventral patterning while later on it is critical for the regulation of precursor proliferation in the dorsal brain, namely in the neocortex, tectum and cerebellum. We have recently shown that Shh also controls the behavior of cells with stem cell properties in the mouse embryonic neocortex, and additional studies have implicated it in the control of cell proliferation in the adult ventral forebrain and in the hippocampus. However, it remains unclear whether it regulates adult stem cell lineages in an equivalent manner. Similarly, it is not known which cells respond to Shh signaling in stem cell niches. Here we demonstrate that Shh is required for cell proliferation in the mouse forebrains subventricular zone (SVZ) stem cell niche and for the production of new olfactory interneurons in vivo. We identify two populations of Gli1+ Shh signaling responding cells: GFAP+ SVZ stem cells and GFAP- precursors. Consistently, we show that Shh regulates the self-renewal of neurosphere-forming stem cells and that it modulates proliferation of SVZ lineages by acting as a mitogen in cooperation with epidermal growth factor (EGF). Together, our data demonstrate a critical and conserved role of Shh signaling in the regulation of stem cell lineages in the adult mammalian brain, highlight the subventricular stem cell astrocytes and their more abundant derived precursors as in vivo targets of Shh signaling, and demonstrate the requirement for Shh signaling in postnatal and adult neurogenesis.
The EMBO Journal | 2002
Marko J. Kallio; Yunhua Chang; Martine Manuel; Tero-Pekka Alastalo; Murielle Rallu; Yorick Gitton; Lila Pirkkala; Marie-Thérèse Loones; Liliana Paslaru; Severine Larney; Sophie Hiard; Michel Morange; Lea Sistonen; Valérie Mezger
Heat shock factor 2, one of the four vertebrate HSFs, transcriptional regulators of heat shock gene expression, is active during embryogenesis and spermatogenesis, with unknown functions and targets. By disrupting the Hsf2 gene, we show that, although the lack of HSF2 is not embryonic lethal, Hsf2−/− mice suffer from brain abnormalities, and meiotic and gameto genesis defects in both genders. The disturbances in brain are characterized by the enlargement of lateral and third ventricles and the reduction of hippocampus and striatum, in correlation with HSF2 expression in proliferative cells of the neuroepithelium and in some ependymal cells in adults. Many developing spermatocytes are eliminated via apoptosis in a stage‐specific manner in Hsf2−/− males, and pachytene spermatocytes also display structural defects in the synaptonemal complexes between homologous chromosomes. Hsf2−/− females suffer from multiple fertility defects: the production of abnormal eggs, the reduction in ovarian follicle number and the presence of hemorrhagic cystic follicles are consistent with meiotic defects. Hsf2−/− females also display hormone response defects, that can be rescued by superovulation treatment, and exhibit abnormal rates of luteinizing hormone receptor mRNAs.
Nature | 2002
Yorick Gitton; Nadia Dahmane; Sonya Baik; Ariel Ruiz i Altaba; Lorenz Neidhardt; Manuela Scholze; Bernhard G. Herrmann; Pascal Kahlem; Alia BenKahla; Sabine Schrinner; Reha Yildirimman; Ralf Herwig; Hans Lehrach; Marie-Laure Yaspo
The DNA sequence of human chromosome 21 (HSA21)1 has opened the route for a systematic molecular characterization of all of its genes. Trisomy 21 is associated with Downs syndrome, the most common genetic cause of mental retardation in humans. The phenotype includes various organ dysmorphies, stereotypic craniofacial anomalies and brain malformations2. Molecular analysis of congenital aneuploidies poses a particular challenge because the aneuploid region contains many protein-coding genes whose function is unknown. One essential step towards understanding their function is to analyse mRNA expression patterns at key stages of organism development. Seminal works in flies, frogs and mice showed that genes whose expression is restricted spatially and/or temporally are often linked with specific ontogenic processes. Here we describe expression profiles of mouse orthologues to HSA21 genes by a combination of large-scale mRNA in situ hybridization at critical stages of embryonic and brain development and in silico (computed) mining of expressed sequence tags. This chromosome-scale expression annotation associates many of the genes tested with a potential biological role and suggests candidates for the pathogenesis of Downs syndrome.The DNA sequence of human chromosome 21 (HSA21) has opened the route for a systematic molecular characterization of all of its genes. Trisomy 21 is associated with Downs syndrome, the most common genetic cause of mental retardation in humans. The phenotype includes various organ dysmorphies, stereotypic craniofacial anomalies and brain malformations. Molecular analysis of congenital aneuploidies poses a particular challenge because the aneuploid region contains many protein-coding genes whose function is unknown. One essential step towards understanding their function is to analyse mRNA expression patterns at key stages of organism development. Seminal works in flies, frogs and mice showed that genes whose expression is restricted spatially and/or temporally are often linked with specific ontogenic processes. Here we describe expression profiles of mouse orthologues to HSA21 genes by a combination of large-scale mRNA in situ hybridization at critical stages of embryonic and brain development and in silico (computed) mining of expressed sequence tags. This chromosome-scale expression annotation associates many of the genes tested with a potential biological role and suggests candidates for the pathogenesis of Downs syndrome.
PLOS ONE | 2007
Maxence Vieux-Rochas; Laurent Coen; Takahiro Sato; Yukiko Kurihara; Yorick Gitton; Ottavia Barbieri; Karine Le Blay; Giorgio R. Merlo; Marc Ekker; Hiroki Kurihara; Philippe Janvier; Giovanni Levi
Background Intake of retinoic acid (RA) or of its precursor, vitamin A, during early pregnancy is associated with increased incidence of craniofacial lesions. The origin of these teratogenic effects remains enigmatic as in cranial neural crest cells (CNCCs), which largely contribute to craniofacial structures, the RA-transduction pathway is not active. Recent results suggest that RA could act on the endoderm of the first pharyngeal arch (1stPA), through a RARß-dependent mechanism. Methodology/Principal Findings Here we show that RA provokes dramatically different craniofacial malformations when administered at slightly different developmental times within a narrow temporal interval corresponding to the colonization of the 1st PA by CNCCs. We provide evidence showing that RA acts on the signalling epithelium of the 1st PA, gradually reducing the expression of endothelin-1 and Fgf8. These two molecular signals are instrumental in activating Dlx genes in incoming CNCCs, thereby triggering the morphogenetic programs, which specify different jaw elements. Conclusions/Significance The anatomical series induced by RA-treatments at different developmental times parallels, at least in some instances, the supposed origin of modern jaws (e.g., the fate of the incus). Our results might provide a conceptual framework for the rise of jaw morphotypes characteristic of gnathostomes.
Seminars in Cell & Developmental Biology | 2010
Yorick Gitton; Eglantine Heude; Maxence Vieux-Rochas; Laurence Benouaiche; Anastasia Fontaine; Takahiro Sato; Yukiko Kurihara; Hiroki Kurihara; Gérard Couly; Giovanni Levi
The shaping of the vertebrate head results from highly dynamic integrated processes involving the growth and exchange of signals between the ectoderm, the endoderm, the mesoderm and Cephalic Neural Crest Cells (CNCCs). During embryonic development, these tissues change their shape and relative position rapidly and come transiently in contact with each other. Molecular signals exchanged in restricted regions of tissue interaction are crucial in providing positional identity to the mesenchymes which will form the different skeletal and muscular components of the head. Slight spatio-temporal modifications of these signalling maps can result in profound changes in craniofacial development and might have contributed to the evolution of facial diversity. Abnormal signalling patterns could also be at the origin of congenital craniofacial malformations. This review brings into perspective recent work on spatial and temporal aspects of facial morphogenesis with particular focus on the molecular mechanisms of jaw specification.
Development | 2008
Laurence Benouaiche; Yorick Gitton; Christine Vincent; Gérard Couly; Giovanni Levi
Morphogenesis of the facial skeleton depends on inductive interactions between cephalic neural crest cells and cephalic epithelia, including the foregut endoderm. We show that Shh expression in the most rostral zone of the endoderm, endoderm zone I (EZ-I), is necessary to induce the formation of the ventral component of the avian nasal capsule: the mesethmoid cartilage. Surgical removal of EZ-I specifically prevented mesethmoid formation, whereas grafting a supernumerary EZ-I resulted in an ectopic mesethmoid. EZ-I ablation was rescued by Shh-loaded beads, whereas inhibition of Shh signalling suppressed mesethmoid formation. This interaction between the endoderm and cephalic neural crest cells was reproduced in vitro, as evidenced by Gli1 induction. Our work bolsters the hypothesis that early endodermal regionalisation provides the blueprint for facial morphogenesis and that its disruption might cause foetal craniofacial defects, including those of the nasal region.
BMC Cancer | 2010
Monica Morini; Simonetta Astigiano; Yorick Gitton; Laura Emionite; Valentina Mirisola; Giovanni Levi; Ottavia Barbieri
BackgroundThe DLX gene family encodes for homeobox transcription factors involved in the control of morphogenesis and tissue homeostasis. Their expression can be regulated by Endothelin1 (ET1), a peptide associated with breast cancer invasive phenotype. Deregulation of DLX gene expression was found in human solid tumors and hematologic malignancies. In particular, DLX4 overexpression represents a possible prognostic marker in ovarian cancer. We have investigated the role of DLX genes in human breast cancer progression.MethodsMDA-MB-231 human breast carcinoma cells were grown in vitro or injected in nude mice, either subcutaneously, to mimic primary tumor growth, or intravenously, to mimic metastatic spreading. Expression of DLX2, DLX5 and DLX6 was assessed in cultured cells, either treated or not with ET1, tumors and metastases by RT-PCR. In situ hybridization was used to confirm DLX gene expression in primary tumors and in lung and bone metastases. The expression of DLX2 and DLX5 was evaluated in 408 primary human breast cancers examining the GSE1456 and GSE3494 microarray datasets. Kaplan-Meier estimates for disease-free survival were calculated for the patients grouped on the basis of DLX2/DLX5 expression.ResultsBefore injection, or after subcutaneous growth, MDA-MB-231 cells expressed DLX2 but neither DLX5 nor DLX6. Instead, in bone and lung metastases resulting from intravenous injection we detected expression of DLX5/6 but not of DLX2, suggesting that DLX5/6 are activated during metastasis formation, and that their expression is alternative to that of DLX2. The in vitro treatment of MDA-MB-231 cells with ET1, resulted in switch from DLX2 to DLX5 expression. By data mining in microarray datasets we found that expression of DLX2 occurred in 21.6% of patients, and was significantly correlated with prolonged disease-free survival and reduced incidence of relapse. Instead, DLX5 was expressed in a small subset of cases, 2.2% of total, displaying reduced disease-free survival and high incidence of relapse which was, however, non-significantly different from the other groups due to the small size of the DLX+ cohort. In all cases, we found mutually exclusive expression of DLX2 and DLX5.ConclusionsOur studies indicate that DLX genes are involved in human breast cancer progression, and that DLX2 and DLX5 genes might serve as prognostic markers.
Molecular and Cellular Neuroscience | 2015
Giulia Garaffo; Daniele Conte; Paolo Provero; Daniela Tomaiuolo; Zheng Luo; Patrizia Pinciroli; Clelia Peano; Ilaria D'Atri; Yorick Gitton; Talya Etzion; Yoav Gothilf; Dafne Gays; Massimo Santoro; Giorgio R. Merlo
During neuronal development and maturation, microRNAs (miRs) play diverse functions ranging from early patterning, proliferation and commitment to differentiation, survival, homeostasis, activity and plasticity of more mature and adult neurons. The role of miRs in the differentiation of olfactory receptor neurons (ORNs) is emerging from the conditional inactivation of Dicer in immature ORN, and the depletion of all mature miRs in this system. Here, we identify specific miRs involved in olfactory development, by focusing on mice null for Dlx5, a homeogene essential for both ORN differentiation and axon guidance and connectivity. Analysis of miR expression in Dlx5−/− olfactory epithelium pointed to reduced levels of miR-9, miR-376a and four miRs of the -200 class in the absence of Dlx5. To functionally examine the role of these miRs, we depleted miR-9 and miR-200 class in reporter zebrafish embryos and observed delayed ORN differentiation, altered axonal trajectory/targeting, and altered genesis and position of olfactory-associated GnRH neurons, i.e. a phenotype known as Kallmann syndrome in humans. miR-9 and miR-200-class negatively control Foxg1 mRNA, a fork-head transcription factor essential for development of the olfactory epithelium and of the forebrain, known to maintain progenitors in a stem state. Increased levels of z-foxg1 mRNA resulted in delayed ORN differentiation and altered axon trajectory, in zebrafish embryos. This work describes for the first time the role of specific miR (-9 and -200) in olfactory/GnRH development, and uncovers a Dlx5–Foxg1 regulation whose alteration affects receptor neuron differentiation, axonal targeting, GnRH neuron development, the hallmarks of the Kallmann syndrome.
Mechanisms of Development | 2001
Ariel Ruiz i Altaba; Yorick Gitton; Nadia Dahmane
Understanding the development of the vertebrate brain and in particular that of the neocortex, where high brain functions reside, remains one of the most difficult and exciting tasks in biology. In this review, we discuss recent experimental evidence as well as different possibilities for the intrinsic regionalization of the embryonic dorsal telencephalon, which may be related to the formation of distinct functional areas in the adult neocortex.
Development | 2011
Yorick Gitton; Laurence Benouaiche; Christine Vincent; Eglantine Heude; Marina Soulika; Kamal Bouhali; Gérard Couly; Giovanni Levi
Morphogenesis of the vertebrate facial skeleton depends upon inductive interactions between cephalic neural crest cells (CNCCs) and cephalic epithelia. The nasal capsule is a CNCC-derived cartilaginous structure comprising a ventral midline bar (mesethmoid) overlaid by a dorsal capsule (ectethmoid). Although Shh signalling from the anterior-most region of the endoderm (EZ-I) patterns the mesethmoid, the cues involved in ectethmoid induction are still undefined. Here, we show that ectethmoid formation depends upon Dlx5 and Dlx6 expression in a restricted ectodermal territory of the anterior neural folds, which we name NF-ZA. In both chick and mouse neurulas, Dlx5 and Dlx6 expression is mostly restricted to NF-ZA. Simultaneous Dlx5 and Dlx6 inactivation in the mouse precludes ectethmoid formation, while the mesethmoid is still present. Consistently, siRNA-mediated downregulation of Dlx5 and Dlx6 in the cephalic region of the early avian neurula specifically prevents ectethmoid formation, whereas other CNCC-derived structures, including the mesethmoid, are not affected. Similarly, NF-ZA surgical removal in chick neurulas averts ectethmoid development, whereas grafting a supernumerary NF-ZA results in an ectopic ectethmoid. Simultaneous ablation or grafting of both NF-ZA and EZ-I result, respectively, in the absence or duplication of both dorsal and ventral nasal capsule components. The present work shows that early ectodermal and endodermal signals instruct different contingents of CNCCs to form the ectethmoid and the mesethmoid, which then assemble to form a complete nasal capsule.