Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yosef Landesman is active.

Publication


Featured researches published by Yosef Landesman.


Leukemia | 2014

CRM1 inhibition induces tumor cell cytotoxicity and impairs osteoclastogenesis in multiple myeloma: molecular mechanisms and therapeutic implications

Yu-Tzu Tai; Yosef Landesman; Chirag Acharya; Yolanda Calle; Mike Zhong; Michele Cea; Daniel Tannenbaum; Antonia Cagnetta; Michaela R. Reagan; Aditya Munshi; William Senapedis; J. R. Saint-Martin; T. Kashyap; Sharon Shacham; Michael Kauffman; Yumei Gu; Lizi Wu; Irene M. Ghobrial; Fenghuang Zhan; Andrew L. Kung; S. A. Schey; Paul G. Richardson; Nikhil C. Munshi; Kenneth C. Anderson

The key nuclear export protein CRM1/XPO1 may represent a promising novel therapeutic target in human multiple myeloma (MM). Here we showed that chromosome region maintenance 1 (CRM1) is highly expressed in patients with MM, plasma cell leukemia cells and increased in patient cells resistant to bortezomib treatment. CRM1 expression also correlates with increased lytic bone and shorter survival. Importantly, CRM1 knockdown inhibits MM cell viability. Novel, oral, irreversible selective inhibitors of nuclear export (SINEs) targeting CRM1 (KPT-185, KPT-330) induce cytotoxicity against MM cells (ED50<200 nM), alone and cocultured with bone marrow stromal cells (BMSCs) or osteoclasts (OC). SINEs trigger nuclear accumulation of multiple CRM1 cargo tumor suppressor proteins followed by growth arrest and apoptosis in MM cells. They further block c-myc, Mcl-1, and nuclear factor κB (NF-κB) activity. SINEs induce proteasome-dependent CRM1 protein degradation; concurrently, they upregulate CRM1, p53-targeted, apoptosis-related, anti-inflammatory and stress-related gene transcripts in MM cells. In SCID mice with diffuse human MM bone lesions, SINEs show strong anti-MM activity, inhibit MM-induced bone lysis and prolong survival. Moreover, SINEs directly impair osteoclastogenesis and bone resorption via blockade of RANKL-induced NF-κB and NFATc1, with minimal impact on osteoblasts and BMSCs. These results support clinical development of SINE CRM1 antagonists to improve patient outcome in MM.


Blood | 2013

Preclinical and clinical efficacy of XPO1/CRM1 inhibition by the karyopherin inhibitor KPT-330 in Ph+ leukemias.

Christopher J. Walker; Joshua J. Oaks; Ramasamy Santhanam; Paolo Neviani; Jason G. Harb; Gregory Ferenchak; Justin Ellis; Yosef Landesman; Ann-Kathrin Eisfeld; Nash Gabrail; Carrie L. Smith; Michael A. Caligiuri; Peter Hokland; Denis Roy; Alistair Reid; Dragana Milojkovic; John M. Goldman; Jane F. Apperley; Ramiro Garzon; Guido Marcucci; Sharon Shacham; Michael Kauffman; Danilo Perrotti

As tyrosine kinase inhibitors (TKIs) fail to induce long-term response in blast crisis chronic myelogenous leukemia (CML-BC) and Philadelphia chromosome-positive (Ph(+)) acute lymphoblastic leukemia (ALL), novel therapies targeting leukemia-dysregulated pathways are necessary. Exportin-1 (XPO1), also known as chromosome maintenance protein 1, regulates cell growth and differentiation by controlling the nucleocytoplasmic trafficking of proteins and RNAs, some of which are aberrantly modulated in BCR-ABL1(+) leukemias. Using CD34(+) progenitors from CML, B-ALL, and healthy individuals, we found that XPO1 expression was markedly increased, mostly in a TKI-sensitive manner, in CML-BC and Ph(+) B-ALL. Notably, XPO1 was also elevated in Ph(-) B-ALL. Moreover, the clinically relevant XPO1 inhibitor KPT-330 strongly triggered apoptosis and impaired the clonogenic potential of leukemic, but not normal, CD34(+) progenitors, and increased survival of BCR-ABL1(+) mice, 50% of which remained alive and, mostly, became BCR-ABL1 negative. Moreover, KPT-330 compassionate use in a patient with TKI-resistant CML undergoing disease progression significantly reduced white blood cell count, blast cells, splenomegaly, lactate dehydrogenase levels, and bone pain. Mechanistically, KPT-330 altered the subcellular localization of leukemia-regulated factors including RNA-binding heterogeneous nuclear ribonucleoprotein A1 and the oncogene SET, thereby inducing reactivation of protein phosphatase 2A tumor suppressor and inhibition of BCR-ABL1 in CML-BC cells. Because XPO1 is important for leukemic cell survival, KPT-330 may represent an alternative therapy for TKI-refractory Ph(+) leukemias.


The Journal of Urology | 2013

CRM1 blockade by selective inhibitors of nuclear export attenuates kidney cancer growth.

Hiromi Inoue; Michael Kauffman; Sharon Shacham; Yosef Landesman; Joy C. Yang; Christopher P. Evans; Robert H. Weiss

PURPOSE Renal cell carcinoma often presents asymptomatically and patients are commonly diagnosed at the metastatic stage, when treatment options are limited and survival is poor. Since progression-free survival using current therapy for metastatic renal cell carcinoma is only 1 to 2 years and existing drugs are associated with a high resistance rate, new pharmacological targets are needed. We identified and evaluated the nuclear exporter protein CRM1 as a novel potential therapy for renal cell carcinoma. MATERIALS AND METHODS We tested the efficacy of the CRM1 inhibitors KPT-185 and 251 in several renal cell carcinoma cell lines and in a renal cell carcinoma xenograft model. Apoptosis and cell cycle arrest were quantified and localization of p53 family proteins was assessed using standard techniques. RESULTS KPT-185 attenuated CRM1 and showed increased cytotoxicity in renal cell carcinoma cells in vitro with evidence of increased apoptosis as well as cell cycle arrest. KPT-185 caused p53 and p21 to remain primarily in the nucleus in all renal cell carcinoma cell lines, suggesting that the mechanism of action of these compounds depends on tumor suppressor protein localization. Furthermore, when administered orally in a high grade renal cell carcinoma xenograft model, the bioavailable CRM1 inhibitor KPT-251 significantly inhibited tumor growth in vivo with the expected on target effects and no obvious toxicity. CONCLUSIONS The CRM1 inhibitor protein family is a novel therapeutic target for renal cell carcinoma that deserves further intensive investigation for this and other urological malignancies.


Journal of Clinical Oncology | 2016

First-in-Class, First-in-Human Phase I Study of Selinexor, a Selective Inhibitor of Nuclear Export, in Patients With Advanced Solid Tumors

Albiruni R. A. Razak; Morten Mau-Soerensen; Nashat Y. Gabrail; John F. Gerecitano; Anthony F. Shields; Thaddeus J. Unger; Jean Richard Saint-Martin; Robert W. Carlson; Yosef Landesman; Dilara McCauley; Tami Rashal; Ulrik Lassen; Richard Kim; Lee-Anne Stayner; Mansoor Raza Mirza; Michael Kauffman; Sharon Shacham; Amit Mahipal

Purpose This trial evaluated the safety, pharmacokinetics, pharmacodynamics, and efficacy of selinexor (KPT-330), a novel, oral small-molecule inhibitor of exportin 1 (XPO1/CRM1), and determined the recommended phase II dose. Patients and Methods In total, 189 patients with advanced solid tumors received selinexor (3 to 85 mg/m2) in 21- or 28-day cycles. Pre- and post-treatment levels of XPO1 mRNA in patient-derived leukocytes were determined by reverse transcriptase quantitative polymerase chain reaction, and tumor biopsies were examined by immunohistochemistry for changes in markers consistent with XPO1 inhibition. Antitumor response was assessed according Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 guidelines. Results The most common treatment-related adverse events included fatigue (70%), nausea (70%), anorexia (66%), and vomiting (49%), which were generally grade 1 or 2. Most commonly reported grade 3 or 4 toxicities were thrombocytopenia (16%), fatigue (15%), and hyponatremia (13%). Clinically significant major organ or cumulative toxicities were rare. The maximum-tolerated dose was defined at 65 mg/m2 using a twice-a-week (days 1 and 3) dosing schedule. The recommended phase II dose of 35 mg/m2 given twice a week was chosen based on better patient tolerability and no demonstrable improvement in radiologic response or disease stabilization compared with higher doses. Pharmacokinetics were dose proportional, with no evidence of drug accumulation. Dose-dependent elevations in XPO1 mRNA in leukocytes were demonstrated up to a dose level of 28 mg/m2 before plateauing, and paired tumor biopsies showed nuclear accumulation of key tumor-suppressor proteins, reduction of cell proliferation, and induction of apoptosis. Among 157 patients evaluable for response, one complete and six partial responses were observed (n = 7, 4%), with 27 patients (17%) achieving stable disease for ≥ 4 months. Conclusion Selinexor is a novel and safe therapeutic with broad antitumor activity. Further interrogation into this class of therapy is warranted.


Chemistry & Biology | 2015

Identifying drug-target selectivity of small-molecule CRM1/XPO1 inhibitors by CRISPR/Cas9 genome editing.

Jasper E. Neggers; Thomas Vercruysse; Maarten Jacquemyn; Els Vanstreels; Erkan Baloglu; Sharon Shacham; Marsha Crochiere; Yosef Landesman; Dirk Daelemans

Validation of drug-target interaction is essential in drug discovery and development. The ultimate proof for drug-target validation requires the introduction of mutations that confer resistance in cells, an approach that is not straightforward in mammalian cells. Using CRISPR/Cas9 genome editing, we show that a homozygous genomic C528S mutation in the XPO1 gene confers cells with resistance to selinexor (KPT-330). Selinexor is an orally bioavailable inhibitor of exportin-1 (CRM1/XPO1) with potent anticancer activity and is currently under evaluation in human clinical trials. Mutant cells were resistant to the induction of cytotoxicity, apoptosis, cell cycle arrest, and inhibition of XPO1 function, including direct binding of the drug to XPO1. These results validate XPO1 as the prime target of selinexor in cells and identify the selectivity of this drug toward the cysteine 528 residue of XPO1. Our findings demonstrate that CRISPR/Cas9 genome editing enables drug-target validation and drug-target selectivity studies in cancer cells.


Molecular Cancer Therapeutics | 2014

XPO1 (CRM1) inhibition represses STAT3 activation to drive a survivin-dependent oncogenic switch in triple negative breast cancer

Yan Cheng; Michael P Holloway; Kevin Nguyen; Dilara McCauley; Yosef Landesman; Michael Kauffman; Sharon Shacham; Rachel A. Altura

Inhibition of XPO1 (CRM1)-mediated nuclear export of multiple tumor suppressor proteins has been proposed as a novel cancer therapeutic strategy to turn off oncogenic signals and enhance tumor suppression. Survivin is a multifunctional protein with oncogenic properties when expressed in the cytoplasm that requires the XPO1–RanGTP complex for its nuclear export. We investigated the antitumor mechanisms of the drug-like selective inhibitors of nuclear export (SINE) XPO1 antagonists KPT-185, KPT-251 KPT-276, and KPT-330 in estrogen receptor–positive and triple-negative breast cancer (TNBC) cell lines and xenograft models of human breast tumors. KPT compounds significantly inhibited breast cancer cell growth and induced tumor cell death, both in vitro and in vivo. These drugs initially promoted survivin accumulation within tumor cell nuclei. However, their major in vitro effect was to decrease survivin cytoplasmic protein levels, correlating with the onset of apoptosis. XPO1 inhibition repressed Survivin transcription by inhibiting CREB-binding protein-mediated STAT3 acetylation, and blocking STAT3 binding to the Survivin promoter. In addition, caspase-3 was activated to cleave survivin, rendering it unavailable to bind X-linked inhibitor of apoptosis protein and block the caspase cascade. Collectively, these data demonstrate that XPO1 inhibition by SINE compounds represses STAT3 transactivation to block the selective oncogenic properties of survivin and supports their clinical use in TNBC. Mol Cancer Ther; 13(3); 675–86. ©2014 AACR.


Nature | 2016

XPO1-dependent nuclear export is a druggable vulnerability in KRAS-mutant lung cancer

Jimi Kim; Elizabeth McMillan; Hyunseok Kim; Niranjan Venkateswaran; Gurbani Makkar; Jaime Rodriguez-Canales; Pamela Villalobos; Jasper Edgar Neggers; Saurabh Mendiratta; Shuguang Wei; Yosef Landesman; William Senapedis; Erkan Baloglu; Chi-Wan B. Chow; Robin E. Frink; Boning Gao; Michael G. Roth; John D. Minna; Dirk Daelemans; Ignacio I. Wistuba; Bruce A. Posner; Pier Paolo Scaglioni; Michael A. White

The common participation of oncogenic KRAS proteins in many of the most lethal human cancers, together with the ease of detecting somatic KRAS mutant alleles in patient samples, has spurred persistent and intensive efforts to develop drugs that inhibit KRAS activity. However, advances have been hindered by the pervasive inter- and intra-lineage diversity in the targetable mechanisms that underlie KRAS-driven cancers, limited pharmacological accessibility of many candidate synthetic-lethal interactions and the swift emergence of unanticipated resistance mechanisms to otherwise effective targeted therapies. Here we demonstrate the acute and specific cell-autonomous addiction of KRAS-mutant non-small-cell lung cancer cells to receptor-dependent nuclear export. A multi-genomic, data-driven approach, utilizing 106 human non-small-cell lung cancer cell lines, was used to interrogate 4,725 biological processes with 39,760 short interfering RNA pools for those selectively required for the survival of KRAS-mutant cells that harbour a broad spectrum of phenotypic variation. Nuclear transport machinery was the sole process-level discriminator of statistical significance. Chemical perturbation of the nuclear export receptor XPO1 (also known as CRM1), with a clinically available drug, revealed a robust synthetic-lethal interaction with native or engineered oncogenic KRAS both in vitro and in vivo. The primary mechanism underpinning XPO1 inhibitor sensitivity was intolerance to the accumulation of nuclear IκBα (also known as NFKBIA), with consequent inhibition of NFκB transcription factor activity. Intrinsic resistance associated with concurrent FSTL5 mutations was detected and determined to be a consequence of YAP1 activation via a previously unappreciated FSTL5–Hippo pathway regulatory axis. This occurs in approximately 17% of KRAS-mutant lung cancers, and can be overcome with the co-administration of a YAP1–TEAD inhibitor. These findings indicate that clinically available XPO1 inhibitors are a promising therapeutic strategy for a considerable cohort of patients with lung cancer when coupled to genomics-guided patient selection and observation.


Molecular Cancer Therapeutics | 2013

CRM1 and BRAF Inhibition Synergize and Induce Tumor Regression in BRAF-Mutant Melanoma

Roberto A. Salas Fragomeni; Hye Won Chung; Yosef Landesman; William Senapedis; Jean-Richard Saint-Martin; Hensin Tsao; Keith T. Flaherty; Sharon Shacham; Michael Kauffman; James C. Cusack

Resistance to BRAF inhibitor therapy places priority on developing BRAF inhibitor-based combinations that will overcome de novo resistance and prevent the emergence of acquired mechanisms of resistance. The CRM1 receptor mediates the nuclear export of critical proteins required for melanoma proliferation, survival, and drug resistance. We hypothesize that by inhibiting CRM1-mediated nuclear export, we will alter the function of these proteins resulting in decreased melanoma viability and enhanced BRAF inhibitor antitumoral effects. To test our hypothesis, selective inhibitors of nuclear export (SINE) analogs KPT-185, KPT-251, KPT-276, and KPT-330 were used to induce CRM1 inhibition. Analogs PLX-4720 and PLX-4032 were used as BRAF inhibitors. Compounds were tested in xenograft and in vitro melanoma models. In vitro, we found CRM1 inhibition decreases melanoma cell proliferation independent of BRAF mutation status and synergistically enhances the effects of BRAF inhibition on BRAF-mutant melanoma by promoting cell-cycle arrest and apoptosis. In melanoma xenograft models, CRM1 inhibition reduces tumor growth independent of BRAF or NRAS status and induces complete regression of BRAF V600E tumors when combined with BRAF inhibition. Mechanistic studies show that CRM1 inhibition was associated with p53 stabilization and retinoblastoma protein (pRb) and survivin modulation. Furthermore, we found that BRAF inhibition abrogates extracellular signal–regulated kinase phosphorylation associated with CRM1 inhibition, which may contribute to the synergy of the combination. In conclusion, CRM1 inhibition impairs melanoma survival in both BRAF-mutant and wild-type melanoma. The combination of CRM1 and BRAF inhibition synergizes and induces melanoma regression in BRAF-mutant melanoma. Mol Cancer Ther; 12(7); 1171–9. ©2013 AACR.


Leukemia | 2016

Activity of a selective inhibitor of nuclear export, selinexor (KPT-330), against AML-initiating cells engrafted into immunosuppressed NSG mice.

Julia Etchin; Joan Montero; Alla Berezovskaya; Bonnie Thi Le; Alex Kentsis; Amanda L. Christie; Amy Saur Conway; Wen Chen; Casie Reed; Marc R. Mansour; Christopher Ng; Sophia Adamia; Scott J. Rodig; Ilene Galinsky; Richard Stone; B Klebanov; Yosef Landesman; Michael Kauffman; Sharon Shacham; Andrew L. Kung; Jean C.Y. Wang; Anthony Letai; A T Look

Currently available combination chemotherapy for acute myeloid leukemia (AML) often fails to result in long-term remissions, emphasizing the need for novel therapeutic strategies. We reasoned that targeted inhibition of a prominent nuclear exporter, XPO1/CRM1, could eradicate self-renewing leukemia-initiating cells (LICs) whose survival depends on timely XPO1-mediated transport of specific protein and RNA cargoes. Using an immunosuppressed mouse model bearing primary patient-derived AML cells, we demonstrate that selinexor (KPT-330), an oral antagonist of XPO1 that is currently in clinical trials, has strong activity against primary AML cells while sparing normal stem and progenitor cells. Importantly, limiting dilution transplantation assays showed that this cytotoxic activity is not limited to the rapidly proliferating bulk population of leukemic cells but extends to the LICs, whose inherent drug resistance and unrestricted self-renewal capacity has been implicated in the difficulty of curing AML patients with conventional chemotherapy alone.


PLOS ONE | 2014

Novel Small Molecule XPO1/CRM1 Inhibitors Induce Nuclear Accumulation of TP53, Phosphorylated MAPK and Apoptosis in Human Melanoma Cells

Jennifer Yang; Matthew A. Bill; Gregory S. Young; Krista La Perle; Yosef Landesman; Sharon Shacham; Michael Kauffman; William Senapedis; Trinayan Kashyap; Jean-Richard Saint-Martin; Kari Kendra; Gregory B. Lesinski

XPO1/CRM1 is a key nuclear exporter protein that mediates translocation of numerous cellular regulatory proteins. We investigated whether XPO1 is a potential therapeutic target in melanoma using novel selective inhibitors of nuclear export (SINE). In vitro effects of SINE on cell growth and apoptosis were measured by MTS assay and flow cytometry [Annexin V/propidium iodide (PI)], respectively in human metastatic melanoma cell lines. Immunoblot analysis was used to measure nuclear localization of key cellular proteins. The in vivo activity of oral SINE was evaluated in NOD/SCID mice bearing A375 or CHL-1 human melanoma xenografts. SINE compounds induced cytostatic and pro-apoptotic effects in both BRAF wild type and mutant (V600E) cell lines at nanomolar concentrations. The cytostatic and pro-apoptotic effects of XPO1 inhibition were associated with nuclear accumulation of TP53, and CDKN1A induction in the A375 cell line with wild type TP53, while pMAPK accumulated in the nucleus regardless of TP53 status. The orally bioavailable KPT-276 and KPT-330 compounds significantly inhibited growth of A375 (p<0.0001) and CHL-1 (p = 0.0087) human melanoma cell lines in vivo at well tolerated doses. Inhibition of XPO1 using SINE represents a potential therapeutic approach for melanoma across cells with diverse molecular phenotypes by promoting growth inhibition and apoptosis.

Collaboration


Dive into the Yosef Landesman's collaboration.

Researchain Logo
Decentralizing Knowledge