Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yosef Yarden is active.

Publication


Featured researches published by Yosef Yarden.


Nature Reviews Molecular Cell Biology | 2001

Untangling the ErbB signalling network

Yosef Yarden; Mark X. Sliwkowski

When epidermal growth factor and its relatives bind the ErbB family of receptors, they trigger a rich network of signalling pathways, culminating in responses ranging from cell division to death, motility to adhesion. The network is often dysregulated in cancer and lends credence to the mantra that molecular understanding yields clinical benefit: over 25,000 women with breast cancer have now been treated with trastuzumab (Herceptin®), a recombinant antibody designed to block the receptor ErbB2. Likewise, small-molecule enzyme inhibitors and monoclonal antibodies to ErbB1 are in advanced phases of clinical testing. What can this pathway teach us about translating basic science into clinical use?


Nature Reviews Molecular Cell Biology | 2006

EGF–ERBB signalling: towards the systems level

Yosef Yarden

Signalling through the ERBB/HER receptors is intricately involved in human cancer and already serves as a target for several cancer drugs. Because of its inherent complexity, it is useful to envision ERBB signalling as a bow-tie-configured, evolvable network, which shares modularity, redundancy and control circuits with robust biological and engineered systems. Because network fragility is an inevitable trade-off of robustness, systems-level understanding is expected to generate therapeutic opportunities to intercept aberrant network activation.


European Journal of Cancer | 2001

The EGFR family and its ligands in human cancer. signalling mechanisms and therapeutic opportunities.

Yosef Yarden

Growth factors and their transmembrane receptor tyrosine kinases play important roles in cell proliferation, survival, migration and differentiation. One group of growth factors, comprising epidermal growth factor (EGF)-like proteins and neuregulins, stimulates cells to divide by activating members of the EGF receptor (EGFR) family, which consists of the EGFR itself and the receptors known as HER2-4. This highly conserved signalling module plays a fundamental role in the morphogenesis of a diverse spectrum of organisms, ranging from humans to nematodes, and has also been implicated in the development and growth of many types of human tumour cells. In humans, more than 30 ligands and the EGFR family of four receptors lie at the head of a complex, multi-layered signal-transduction network. Different activated receptor-ligand complexes vary in both the strength and type of cellular responses that they induce. Analysis of the multiple processes that modulate EGFR signal transduction, such as receptor heterodimerisation and endocytosis, has revealed new therapeutic opportunities and elucidated mechanisms contributing to the efficacy of existing anticancer treatments.


Molecular Cell | 1999

Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1.

Gil Levkowitz; Hadassa Waterman; Seth Ettenberg; Menachem Katz; Alexander Y. Tsygankov; Iris Alroy; Sara Lavi; Kazuhiro Iwai; Yuval Reiss; Aaron Ciechanover; Stanley Lipkowitz; Yosef Yarden

Receptor desensitization is accomplished by accelerated endocytosis and degradation of ligand-receptor complexes. An in vitro reconstituted system indicates that Cbl adaptor proteins directly control downregulation of the receptor for the epidermal growth factor (EGFR) by recruiting ubiquitin-activating and -conjugating enzymes. We infer a sequential process initiated by autophosphorylation of EGFR at a previously identified lysosome-targeting motif that subsequently recruits Cbl. This is followed by tyrosine phosphorylation of c-Cbl at a site flanking its RING finger, which enables receptor ubiquitination and degradation. Whereas all three members of the Cbl family can enhance ubiquitination, two oncogenic Cbl variants, whose RING fingers are defective and phosphorylation sites are missing, are unable to desensitize EGFR. Our study identifies Cbl proteins as components of the ubiquitin ligation machinery and implies that they similarly suppress many other signaling pathways.


Molecular and Cellular Biology | 1996

A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor.

Eldad Tzahar; Hadassa Waterman; Xiaomei Chen; Gil Levkowitz; Devarajan Karunagaran; Sara Lavi; B J Ratzkin; Yosef Yarden

The ErbB family includes four homologous transmembrane tyrosine kinases. Whereas ErbB-1 binds to the epidermal growth factor (EGF), both ErbB-3 and ErbB-4 bind to the Neu differentiation factors (NDFs, or neuregulins), and ErbB-2, the most oncogenic family member, is an orphan receptor whose function is still unknown. Because previous lines of evidence indicated the existence of interreceptor interactions, we used ectopic expression of individual ErbB proteins and their combinations to analyze the details of receptor cross talks. We show that 8 of 10 possible homo-and heterodimeric complexes of ErbB proteins can be hierarchically induced by ligand binding. Although ErbB-2 binds neither ligand, even in a heterodimeric receptor complex, it is the preferred heterodimer partner of the three other members, and it favors interaction with ErbB-3. Selective receptor overexpression in human tumor cells appears to bias the hierarchical relationships. The ordered network is reflected in receptor transphosphorylation, ErbB-2-mediated enhancement of ligand affinities, and remarkable potentiation of mitogenesis by a coexpressed ErbB-2. The observed superior ability of ErbB-2 to form heterodimers, in conjunction with its uniquely high basal tyrosine kinase activity, may explain why ErbB-2 overexpression is associated with poor prognosis.


The EMBO Journal | 1996

Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions.

Ronit Pinkas-Kramarski; L Soussan; Hadassa Waterman; Gil Levkowitz; Iris Alroy; Leah N. Klapper; Sara Lavi; Rony Seger; Barry J. Ratzkin; Michael Sela; Yosef Yarden

The ErbB family includes two receptors, ErbB‐1 and ErbB‐3, that respectively bind to epidermal growth factor and Neu differentiation factor, and an orphan receptor, ErbB‐2. Unlike ErbB‐1 and ErbB‐2, the intrinsic tyrosine kinase of ErbB‐3 is catalytically impaired. By using interleukin‐3‐dependent cells that ectopically express the three ErbB proteins or their combinations, we found that ErbB‐3 is devoid of any biological activity but both ErbB‐1 and ErbB‐2 can reconstitute its extremely potent mitogenic activity. Transactivation of ErbB‐3 correlates with heterodimer formation and is reflected in receptor phosphorylation and the transregulation of ligand affinity. Inter‐receptor interactions enable graded proliferative and survival signals: heterodimers are more potent than homodimers, and ErbB‐3‐containing complexes, especially the ErbB‐2/ErbB‐3 heterodimer, are more active than ErbB‐1 complexes. Nevertheless, ErbB‐1 signaling displays dominance over ErbB‐3 when the two receptors are coexpressed. Although all receptor combinations activate the mitogen‐activated protein kinases ERK and c‐Jun kinase, they differ in their rate of endocytosis and in coupling to intervening signaling proteins. It is conceivable that combinatorial receptor interactions diversify signal transduction and confer double regulation, in cis and in trans, of the superior mitogenic activity of the kinase‐defective ErbB‐3.


FEBS Letters | 1997

The ErbB signaling network in embryogenesis and oncogenesis: signal diversification through combinatorial ligand‐receptor interactions

Iris Alroy; Yosef Yarden

Ligand‐induced activation of receptor tyrosine kinases (RTK) results in the initiation of diverse cellular pathways, including proliferation, differentiation and cell migration. The ErbB family of RTKs represents a model for signal diversification through the formation of homo‐ and heterodimeric receptor complexes. Each dimeric receptor complex will initiate a distinct signaling pathway by recruiting a different set of Src homology 2‐ (SH2‐) containing effector proteins. Further complexity is added due to the existence of an oncogenic receptor that enhances and stabilizes dimerization but has no ligand (ErbB‐2), and a receptor that can recruit novel SH‐2‐containing proteins, but is itself devoid of kinase activity (ErbB‐3). The resulting signaling network has important implications for embryonic development and malignant transformation.


The EMBO Journal | 1996

ErbB-2 is a common auxiliary subunit of NDF and EGF receptors: implications for breast cancer.

Devarajan Karunagaran; Eldad Tzahar; Roger R. Beerli; Xiaomei Chen; Diana Graus-Porta; Barry J. Ratzkin; Rony Seger; Nancy E. Hynes; Yosef Yarden

Overexpression of the erbB‐2 gene contributes to aggressive behavior of various human adenocarcinomas, including breast cancer, through an unknown molecular mechanism. The erbB‐2‐encoded protein is a member of the ErbB family of growth factor receptors, but no direct ligand of ErbB‐2 has been reported. We show that in various cells ErbB‐2 can form heterodimers with both EGF receptor (ErbB‐1) and NDF receptors (ErbB‐3 and ErbB‐4), suggesting that it may affect the action of heterologous ligands without the involvement of a direct ErbB‐2 ligand. This possibility was addressed in breast cancer cells through either overexpression of ErbB‐2 or by blocking its delivery to the cell surface by means of an endoplasmic reticulum‐trapped antibody. We report that ErbB‐2 overexpression enhanced binding affinities to both EGF and NDF, through deceleration of ligand dissociation rates. Likewise, removal of ErbB‐2 from the cell surface almost completely abolished ligand binding by accelerating dissociation of both growth factors. The kinetic effects resulted in enhancement and prolongation of the stimulation of two major cytoplasmic signaling pathways, namely: MAP kinase (ERK) and c‐Jun kinase (SAPK), by either ligand. Our results imply that ErbB‐2 is a pan‐ErbB subunit of the high affinity heterodimeric receptors for NDF and EGF. Therefore, the oncogenic action of ErbB‐2 in human cancers may be due to its ability to potentiate in trans growth factor signaling.


Cell | 1992

Neu differentiation factor: A transmembrane glycoprotein containing an EGF domain and an immunoglobulin homology unit

Duanzhi Wen; Elior Peles; Rod Cupples; Sidney V. Suggs; Sarah S. Bacus; Yi Luo; Geraldine Trail; Sylvia Hu; Scott M. Silbiger; Rachel Ben Levy; Raymond A. Koski; Hsieng S. Lu; Yosef Yarden

We recently reported that a 44 kd glycoprotein secreted by transformed fibroblasts stimulates tyrosine phosphorylation of the product of the neu proto-oncogene and induces differentiation of mammary tumor cells to milk-producing, growth-arrested cells. A partial amino acid sequence of the protein, termed Neu differentiation factor (NDF), enabled cloning of the corresponding complementary DNA. The deduced structure of the precursor of NDF indicated that it is a transmembrane protein whose extracellular portion contains an EGF-like domain that probably functions as a receptor recognition site. In addition, the ectodomain contains one immunoglobulin homology unit. Despite the lack of a recognizable hydrophobic signal peptide at the N-terminus, a recombinant NDF, like the natural molecule, is released into the medium of transfected COS-7 cells in a biologically active form. Northern blot analysis indicated the existence of several NDF transcripts, the major ones being 1.8, 2.6, and 6.7 kb in size. Transformation by the ras oncogene dramatically elevated the expression of NDF in fibroblasts.


Cell | 1992

Isolation of the Neu HER-2 stimulatory ligand: A 44 kd glycoprotein that induces differentiation of mammary tumor cells

Elior Peles; Sarah S. Bacus; Raymond A. Koski; Hsieng S. Lu; Duanzhi Wen; Steven G. Ogden; Rachel Ben Levy; Yosef Yarden

The neu/HER-2 proto-oncogene (also called erbB-2) encodes a transmembrane glycoprotein related to the epidermal growth factor receptor. We have purified to homogeneity a 44 kd glycoprotein from the medium of ras-transformed cells that stimulates phosphorylation of the Neu protein and retains activity after elution from the polyacrylamide gel. The protein is active at picomolar concentrations and displays a novel N-terminal sequence. Cross-linking experiments with radiolabeled p44 result in specific labeling of Neu, indicating that p44 is a ligand for Neu or a related receptor. The purified protein induces phenotypic differentiation of cultured human breast cancer cells, including altered morphology and synthesis of milk components. This is accompanied by an increase in nuclear area, inhibition of cell growth (probably by cell cycle arrest at the late S or the G2/M phases), and induction of DNA polyploidy. We propose the name Neu differentiation factor (NDF) for p44.

Collaboration


Dive into the Yosef Yarden's collaboration.

Top Co-Authors

Avatar

Michael Sela

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sara Lavi

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Moshit Lindzen

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Givol

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Nir Ben-Chetrit

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yaara Zwang

Weizmann Institute of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge