Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoshie Iizuka is active.

Publication


Featured researches published by Yoshie Iizuka.


PLOS ONE | 2011

Stressing the Ubiquitin-Proteasome System without 20S Proteolytic Inhibition Selectively Kills Cervical Cancer Cells

Ravi K. Anchoori; Saeed R. Khan; Thanasak Sueblinvong; Alicia Felthauser; Yoshie Iizuka; Riccardo Gavioli; Federica Destro; Rachel Isaksson Vogel; Shiwen Peng; Richard Roden; Martina Bazzaro

Cervical cancer cells exhibit an increased requirement for ubiquitin-dependent protein degradation associated with an elevated metabolic turnover rate, and for specific signaling pathways, notably HPV E6-targeted degradation of p53 and PDZ proteins. Natural compounds with antioxidant properties including flavonoids and triterpenoids hold promise as anticancer agents by interfering with ubiquitin-dependent protein degradation. An increasing body of evidence indicates that their α-β unsaturated carbonyl system is the molecular determinant for inhibition of ubiquitin-mediated protein degradation up-stream of the catalytic sites of the 20S proteasome. Herein we report the identification and characterization of a new class of chalcone-based, potent and cell permeable chemical inhibitors of ubiquitin-dependent protein degradation, and a lead compound RAMB1. RAMB1 inhibits ubiquitin-dependent protein degradation without compromising the catalytic activities of the 20S proteasome, a mechanism distinct from that of Bortezomib. Treatment of cervical cancer cells with RAMB1 triggers unfolded protein responses, including aggresome formation and Hsp90 stabilization, and increases p53 steady state levels. RAMB1 treatment results in activation of lysosomal-dependent degradation pathways as a mechanism to compensate for increasing levels of poly-ubiquitin enriched toxic aggregates. Importantly, RAMB1 synergistically triggers cell death of cervical cancer cells when combined with the lysosome inhibitor Chloroquine.


Clinical Cancer Research | 2014

Small-Molecule RA-9 Inhibits Proteasome-Associated DUBs and Ovarian Cancer In Vitro and In Vivo via Exacerbating Unfolded Protein Responses

Kathleen Coughlin; Ravi K. Anchoori; Yoshie Iizuka; Joyce Meints; Lauren Macneill; Rachel Isaksson Vogel; Robert Z. Orlowski; Michael K. Lee; Richard Roden; Martina Bazzaro

Purpose: Ovarian cancer is the deadliest of the gynecologic malignancies. Carcinogenic progression is accompanied by upregulation of ubiquitin-dependent protein degradation machinery as a mechanism to compensate with elevated endogenous proteotoxic stress. Recent studies support the notion that deubiquitinating enzymes (DUB) are essential factors in proteolytic degradation and that their aberrant activity is linked to cancer progression and chemoresistance. Thus, DUBs are an attractive therapeutic target for ovarian cancer. Experimental Design: The potency and selectivity of RA-9 inhibitor for proteasome-associated DUBs was determined in ovarian cancer cell lines and primary cells. The anticancer activity of RA-9 and its mechanism of action were evaluated in multiple cancer cell lines in vitro and in vivo in immunodeficient mice bearing an intraperitoneal ES-2 xenograft model of human ovarian cancer. Results: Here, we report the characterization of RA-9 as a small-molecule inhibitor of proteasome-associated DUBs. Treatment with RA-9 selectively induces onset of apoptosis in ovarian cancer cell lines and primary cultures derived from donors. Loss of cell viability following RA-9 exposure is associated with an unfolded protein response as mechanism to compensate for unsustainable levels of proteotoxic stress. In vivo treatment with RA-9 retards tumor growth, increases overall survival, and was well tolerated by the host. Conclusions: Our preclinical studies support further evaluation of RA-9 as an ovarian cancer therapeutic. Clin Cancer Res; 20(12); 3174–86. ©2014 AACR.


PLOS ONE | 2012

Establishment, Characterization and Downstream Application of Primary Ovarian Cancer Cells Derived from Solid Tumors

Thanasak Sueblinvong; Rahel Ghebre; Yoshie Iizuka; Stefan E. Pambuccian; Rachel Isaksson Vogel; Amy P.N. Skubitz; Martina Bazzaro

Ovarian cancer is the deadliest of the gynecological diseases and the fifth cause of cancer death among American women. This is mainly due to the lack of prognostic tools capable of detecting early stages of ovarian cancer and to the high rate of resistance to the current chemotherapeutic regimens. In this scenario the overall 5-year survival rate for ovarian cancer patients diagnosed at late stage is less than 25%. Abnormalities associated with the malignant phenotype and the mechanisms of tumor progression are not clearly understood. In vitro studies are necessary, yet have been hampered due to the limitations accompanied with the use of ovarian cancer cell lines and the heterogeneity of the ovarian cancer cell population derived from ascites fluids. In this study we present a simple, rapid and reproducible method for the isolation and characterization of ovarian cancer cells from solid tumor tissue and show that enzymatic digestion for 30 minutes with dispase II results in the most effective recovery of viable epithelial ovarian cancer (EOC) cells. The resulting cancer (EOC) cell preparations demonstrate a significant yield, high levels of viability and are fibroblast-free. They grow for up to six passages and retain the capacity of forming spheroids-like structures in agarose. In addition, they can be genetically manipulated and used for drug screening, thus rendering them highly suitable for downstream applications. Notably, isolation of ovarian cancer cells from solid specimens using this method has the advantage of allowing for isolation of cancer cells from early stages of ovarian cancer as well as obtaining cells from defined either primary and/or metastatic ovarian cancer sites. Thus, these cells are highly suitable for investigations aimed at understanding ovarian cancer.


Journal of Immunology | 2015

UNC-45A Is a Nonmuscle Myosin IIA Chaperone Required for NK Cell Cytotoxicity via Control of Lytic Granule Secretion

Yoshie Iizuka; Frank Cichocki; Andrew Sieben; Fabio Sforza; Razaul Karim; Kathleen Coughlin; Rachel Isaksson Vogel; Riccardo Gavioli; Valarie McCullar; Todd Lenvik; Michael K. Lee; Jeffrey S. Miller; Martina Bazzaro

NK cell’s killing is a tightly regulated process under the control of specific cytoskeletal proteins. This includes Wiskott–Aldrich syndrome protein, Wiskott–Aldrich syndrome protein–interacting protein, cofilin, Munc13-4, and nonmuscle myosin IIA (NMIIA). These proteins play a key role in controlling NK-mediated cytotoxicity either via regulating the attachment of lytic granules to the actin-based cytoskeleton or via promoting the cytoskeletal reorganization that is requisite for lytic granule release. UNC-45A is a highly conserved member of the UNC-45/CRO1/She4p family of proteins that act as chaperones for both conventional and nonconventional myosin. Although we and others have shown that in lower organisms and in mammalian cells NMIIA-associated functions, such as cytokinesis, cell motility, and organelle trafficking, are dependent upon the presence of UNC-45A, its role in NK-mediated functions is largely unknown. In this article, we describe UNC-45A as a key regulator of NK-mediated cell toxicity. Specifically we show that, in human NK cells, UNC-45A localize at the NK cell immunological synapse of activated NK cells and is part of the multiprotein complex formed during NK cell activation. Furthermore, we show that UNC-45A is disposable for NK cell immunological synapse formation and lytic granules reorientation but crucial for lytic granule exocytosis. Lastly, loss of UNC-45A leads to reduced NMIIA binding to actin, suggesting that UNC-45A is a crucial component in regulating human NK cell cytoskeletal dynamics via promoting the formation of actomyosin complexes.


Methods of Molecular Biology | 2010

Identification of NK Cell Receptor Ligands Using a Signaling Reporter System

Yoshie Iizuka; Nikunj V. Somia; Koho Iizuka

NK cell responses are regulated by a balance of inhibitory and activating signals, reflecting the net effect of interactions between receptors and ligands on target and effector cell surfaces. The identification of ligands for orphan NK cell receptors is key to enhancing our understanding of NK cell biology. Here we describe a strategy (protocol) for the identification of ligands for orphan NK cell receptors using signaling reporter cells in combination with a virus rescue system.


Molecular Biology of the Cell | 2017

UNC-45A is required for neurite extension via controlling NMII activation

Yoshie Iizuka; Ashley Mooneyham; Andrew Sieben; Kevin Chen; Makayla Maile; Raffaele Hellweg; Florian Schütz; Kebebush Teckle; Timothy K. Starr; Venugopal Thayanithy; Rachel Isaksson Vogel; Emil Lou; Michael K. Lee; Martina Bazzaro

UNC-45A is a novel regulator of neuronal differentiation. UNC-45A localizes at the growth cone, binds to NMIIA and NMIIB, and is disposable for neuronal survival but is required for neurite initiation and extension via regulating NMII activation. Thus UNC-45A is a potential master regulator of a number of NMII-mediated cellular processes.


Journal of Visualized Experiments | 2014

Method for Obtaining Primary Ovarian Cancer Cells From Solid Specimens

Lee Pribyl; Kathleen Coughlin; Thanasak Sueblinvong; Kristin Shields; Yoshie Iizuka; Levi S. Downs; Rahel Ghebre; Martina Bazzaro

Reliable tools for investigating ovarian cancer initiation and progression are urgently needed. While the use of ovarian cancer cell lines remains a valuable tool for understanding ovarian cancer, their use has many limitations. These include the lack of heterogeneity and the plethora of genetic alterations associated with extended in vitro passaging. Here we describe a method that allows for rapid establishment of primary ovarian cancer cells form solid clinical specimens collected at the time of surgery. The method consists of subjecting clinical specimens to enzymatic digestion for 30 min. The isolated cell suspension is allowed to grow and can be used for downstream application including drug screening. The advantage of primary ovarian cancer cell lines over established ovarian cancer cell lines is that they are representative of the original specific clinical specimens they are derived from and can be derived from different sites whether primary or metastatic ovarian cancer.


Hormones and Cancer | 2018

RNA Sequencing of Carboplatin- and Paclitaxel-Resistant Endometrial Cancer Cells Reveals New Stratification Markers and Molecular Targets for Cancer Treatment

Raffaele Hellweg; Ashley Mooneyham; Zenas Chang; M. Shetty; Edith Emmings; Yoshie Iizuka; Christopher M. Clark; Timothy K. Starr; Juan H. Abrahante; Florian Schütz; Gottfried E. Konecny; Peter A. Argenta; Martina Bazzaro

Despite advances in surgical technique and adjuvant treatment, endometrial cancer has recently seen an increase in incidence and mortality in the USA. The majority of endometrial cancers can be cured by surgery alone or in combination with adjuvant chemo- or radiotherapy; however, a subset of patients experience recurrence for reasons that remain unclear. Recurrence is associated with chemoresistance to carboplatin and paclitaxel and consequentially, high mortality. Understanding the pathways involved in endometrial cancer chemoresistance is paramount for the identification of biomarkers and novel molecular targets for this disease. Here, we generated the first matched pairs of carboplatin-sensitive/carboplatin-resistant and paclitaxel-sensitive/paclitaxel-resistant endometrial cancer cells and subjected them to bulk RNA sequencing analysis. We found that 45 genes are commonly upregulated in carboplatin- and paclitaxel-resistant cells as compared to controls. Of these, the leukemia inhibitory factor, (LIF), the protein tyrosine phosphatase type IVA, member 3 (PTP4A3), and the transforming growth factor beta 1 (TGFB1) showed a highly significant correlation between expression level and endometrial cancer overall survival (OS) and can stratify the 545 endometrial cancer patients in the TCGA cohort into a high-risk and low-risk-cohorts. Additionally, four genes within the 45 upregulated chemoresistance-associated genes are ADAMTS5, MICAL2, STAT5A, and PTP4A3 codes for proteins for which small-molecule inhibitors already exist. We identified these proteins as molecular targets for chemoresistant endometrial cancer and showed that treatment with their correspondent inhibitors effectively killed otherwise chemoresistant cells. Collectively, these findings underline the utility of matched pair of chemosensitive and chemoresistant cancer cells to identify markers for endometrial cancer risk stratification and to serve as a pharmacogenomics model for identification of alternative chemotherapy approaches for treatment of patients with recurrent disease.


Frontiers in Cell and Developmental Biology | 2018

Cellular and Molecular Networking Within the Ecosystem of Cancer Cell Communication via Tunneling Nanotubes

Emil Lou; Edward Zhai; Akshat Sarkari; Snider Desir; Phillip Y.-P. Wong; Yoshie Iizuka; Jianbo Yang; Subbaya Subramanian; James B. McCarthy; Martina Bazzaro; Clifford J. Steer

Intercellular communication is vital to the ecosystem of cancer cell organization and invasion. Identification of key cellular cargo and their varied modes of transport are important considerations in understanding the basic mechanisms of cancer cell growth. Gap junctions, exosomes, and apoptotic bodies play key roles as physical modalities in mediating intercellular transport. Tunneling nanotubes (TNTs)—narrow actin-based cytoplasmic extensions—are unique structures that facilitate direct, long distance cell-to-cell transport of cargo, including microRNAs, mitochondria, and a variety of other sub cellular components. The transport of cargo via TNTs occurs between malignant and stromal cells and can lead to changes in gene regulation that propagate the cancer phenotype. More notably, the transfer of these varied molecules almost invariably plays a critical role in the communication between cancer cells themselves in an effort to resist death by chemotherapy and promote the growth and metastases of the primary oncogenic cell. The more traditional definition of “Systems Biology” is the computational and mathematical modeling of complex biological systems. The concept, however, is now used more widely in biology for a variety of contexts, including interdisciplinary fields of study that focus on complex interactions within biological systems and how these interactions give rise to the function and behavior of such systems. In fact, it is imperative to understand and reconstruct components in their native context rather than examining them separately. The long-term objective of evaluating cancer ecosystems in their proper context is to better diagnose, classify, and more accurately predict the outcome of cancer treatment. Communication is essential for the advancement and evolution of the tumor ecosystem. This interplay results in cancer progression. As key mediators of intercellular communication within the tumor ecosystem, TNTs are the central topic of this article.


Journal of Visualized Experiments | 2015

Method for measuring the activity of deubiquitinating enzymes in cell lines and tissue samples.

Percy Griffin; Ashley Sexton; Lauren Macneill; Yoshie Iizuka; Michael K. Lee; Martina Bazzaro

The ubiquitin-proteasome system has recently been implicated in various pathologies including neurodegenerative diseases and cancer. In light of this, techniques for studying the regulatory mechanism of this system are essential to elucidating the cellular and molecular processes of the aforementioned diseases. The use of hemagglutinin derived ubiquitin probes outlined in this paper serves as a valuable tool for the study of this system. This paper details a method that enables the user to perform assays that give a direct visualization of deubiquitinating enzyme activity. Deubiquitinating enzymes control proteasomal degradation and share functional homology at their active sites, which allows the user to investigate the activity of multiple enzymes in one assay. Lysates are obtained through gentle mechanical cell disruption and incubated with active site directed probes. Functional enzymes are tagged with the probes while inactive enzymes remain unbound. By running this assay, the user obtains information on both the activity and potential expression of multiple deubiquitinating enzymes in a fast and easy manner. The current method is significantly more efficient than using individual antibodies for the predicted one hundred deubiquitinating enzymes in the human cell.

Collaboration


Dive into the Yoshie Iizuka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard Roden

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge