Yoshihide Wada
International Institute for Applied Systems Analysis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yoshihide Wada.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Jacob Schewe; Jens Heinke; Dieter Gerten; Ingjerd Haddeland; Nigel W. Arnell; Douglas B. Clark; Rutger Dankers; Stephanie Eisner; B M Fekete; Felipe J. Colón-González; Simon N. Gosling; Hyungjun Kim; Xingcai Liu; Yoshimitsu Masaki; Felix T. Portmann; Yusuke Satoh; Tobias Stacke; Qiuhong Tang; Yoshihide Wada; Dominik Wisser; Torsten Albrecht; Katja Frieler; Franziska Piontek; Lila Warszawski; P. Kabat
Water scarcity severely impairs food security and economic prosperity in many countries today. Expected future population changes will, in many countries as well as globally, increase the pressure on available water resources. On the supply side, renewable water resources will be affected by projected changes in precipitation patterns, temperature, and other climate variables. Here we use a large ensemble of global hydrological models (GHMs) forced by five global climate models and the latest greenhouse-gas concentration scenarios (Representative Concentration Pathways) to synthesize the current knowledge about climate change impacts on water resources. We show that climate change is likely to exacerbate regional and global water scarcity considerably. In particular, the ensemble average projects that a global warming of 2 °C above present (approximately 2.7 °C above preindustrial) will confront an additional approximate 15% of the global population with a severe decrease in water resources and will increase the number of people living under absolute water scarcity (<500 m3 per capita per year) by another 40% (according to some models, more than 100%) compared with the effect of population growth alone. For some indicators of moderate impacts, the steepest increase is seen between the present day and 2 °C, whereas indicators of very severe impacts increase unabated beyond 2 °C. At the same time, the study highlights large uncertainties associated with these estimates, with both global climate models and GHMs contributing to the spread. GHM uncertainty is particularly dominant in many regions affected by declining water resources, suggesting a high potential for improved water resource projections through hydrological model development.
Nature | 2012
Tom Gleeson; Yoshihide Wada; Marc F. P. Bierkens; Ludovicus P. H. van Beek
Groundwater is a life-sustaining resource that supplies water to billions of people, plays a central part in irrigated agriculture and influences the health of many ecosystems. Most assessments of global water resources have focused on surface water, but unsustainable depletion of groundwater has recently been documented on both regional and global scales. It remains unclear how the rate of global groundwater depletion compares to the rate of natural renewal and the supply needed to support ecosystems. Here we define the groundwater footprint (the area required to sustain groundwater use and groundwater-dependent ecosystem services) and show that humans are overexploiting groundwater in many large aquifers that are critical to agriculture, especially in Asia and North America. We estimate that the size of the global groundwater footprint is currently about 3.5 times the actual area of aquifers and that about 1.7 billion people live in areas where groundwater resources and/or groundwater-dependent ecosystems are under threat. That said, 80 per cent of aquifers have a groundwater footprint that is less than their area, meaning that the net global value is driven by a few heavily overexploited aquifers. The groundwater footprint is the first tool suitable for consistently evaluating the use, renewal and ecosystem requirements of groundwater at an aquifer scale. It can be combined with the water footprint and virtual water calculations, and be used to assess the potential for increasing agricultural yields with renewable groundwaterref. The method could be modified to evaluate other resources with renewal rates that are slow and spatially heterogeneous, such as fisheries, forestry or soil.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Ingjerd Haddeland; Jens Heinke; Hester Biemans; Stephanie Eisner; Martina Flörke; Naota Hanasaki; Markus Konzmann; F. Ludwig; Yoshimitsu Masaki; Jacob Schewe; Tobias Stacke; Zachary Tessler; Yoshihide Wada; Dominik Wisser
Significance Humans alter the water cycle by constructing dams and through water withdrawals. Climate change is expected to additionally affect water supply and demand. Here, model analyses of climate change and direct human impacts on the terrestrial water cycle are presented. The results indicate that the impact of man-made reservoirs and water withdrawals on the long-term global terrestrial water balance is small. However, in some river basins, impacts of human interventions are significant. In parts of Asia and the United States, the effects of human interventions exceed the impacts expected for moderate levels of global warming. This study also identifies areas where irrigation water is currently scarce, and where increases in irrigation water scarcity are projected. Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct human impacts on the terrestrial water cycle are presented and compared using a multimodel approach. Seven global hydrological models have been forced with multiple climate projections, and with and without taking into account impacts of human interventions such as dams and water withdrawals on the hydrological cycle. Model results are analyzed for different levels of global warming, allowing for analyses in line with temperature targets for climate change mitigation. The results indicate that direct human impacts on the water cycle in some regions, e.g., parts of Asia and in the western United States, are of the same order of magnitude, or even exceed impacts to be expected for moderate levels of global warming (+2 K). Despite some spread in model projections, irrigation water consumption is generally projected to increase with higher global mean temperatures. Irrigation water scarcity is particularly large in parts of southern and eastern Asia, and is expected to become even larger in the future.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Joshua Elliott; Delphine Deryng; Christoph Müller; Katja Frieler; Markus Konzmann; Dieter Gerten; Michael Glotter; Martina Flörke; Yoshihide Wada; Neil Best; Stephanie Eisner; B M Fekete; Christian Folberth; Ian T. Foster; Simon N. Gosling; Ingjerd Haddeland; Nikolay Khabarov; F. Ludwig; Yoshimitsu Masaki; Stefan Olin; Cynthia Rosenzweig; Alex C. Ruane; Yusuke Satoh; Erwin Schmid; Tobias Stacke; Qiuhong Tang; Dominik Wisser
Significance Freshwater availability is relevant to almost all socioeconomic and environmental impacts of climate and demographic change and their implications for sustainability. We compare ensembles of water supply and demand projections driven by ensemble output from five global climate models. Our results suggest reasons for concern. Direct climate impacts to maize, soybean, wheat, and rice involve losses of 400–2,600 Pcal (8–43% of present-day total). Freshwater limitations in some heavily irrigated regions could necessitate reversion of 20–60 Mha of cropland from irrigated to rainfed management, and a further loss of 600–2,900 Pcal. Freshwater abundance in other regions could help ameliorate these losses, but substantial investment in infrastructure would be required. We compare ensembles of water supply and demand projections from 10 global hydrological models and six global gridded crop models. These are produced as part of the Inter-Sectoral Impacts Model Intercomparison Project, with coordination from the Agricultural Model Intercomparison and Improvement Project, and driven by outputs of general circulation models run under representative concentration pathway 8.5 as part of the Fifth Coupled Model Intercomparison Project. Models project that direct climate impacts to maize, soybean, wheat, and rice involve losses of 400–1,400 Pcal (8–24% of present-day total) when CO2 fertilization effects are accounted for or 1,400–2,600 Pcal (24–43%) otherwise. Freshwater limitations in some irrigated regions (western United States; China; and West, South, and Central Asia) could necessitate the reversion of 20–60 Mha of cropland from irrigated to rainfed management by end-of-century, and a further loss of 600–2,900 Pcal of food production. In other regions (northern/eastern United States, parts of South America, much of Europe, and South East Asia) surplus water supply could in principle support a net increase in irrigation, although substantial investments in irrigation infrastructure would be required.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Christel Prudhomme; Ignazio Giuntoli; Emma L. Robinson; Douglas B. Clark; Nigel W. Arnell; Rutger Dankers; B M Fekete; Wietse Franssen; Dieter Gerten; Simon N. Gosling; Stefan Hagemann; David M. Hannah; Hyungjun Kim; Yoshimitsu Masaki; Yusuke Satoh; Tobias Stacke; Yoshihide Wada; Dominik Wisser
Significance Increasing concentrations of greenhouse gases in the atmosphere are widely expected to influence global climate over the coming century. The impact on drought is uncertain because of the complexity of the processes but can be estimated using outputs from an ensemble of global models (hydrological and climate models). Using an ensemble of 35 simulations, we show a likely increase in the global severity of drought by the end of 21st century, with regional hotspots including South America and Central and Western Europe in which the frequency of drought increases by more than 20%. The main source of uncertainty in the results comes from the hydrological models, with climate models contributing to a substantial but smaller amount of uncertainty. Increasing concentrations of greenhouse gases in the atmosphere are expected to modify the global water cycle with significant consequences for terrestrial hydrology. We assess the impact of climate change on hydrological droughts in a multimodel experiment including seven global impact models (GIMs) driven by bias-corrected climate from five global climate models under four representative concentration pathways (RCPs). Drought severity is defined as the fraction of land under drought conditions. Results show a likely increase in the global severity of hydrological drought at the end of the 21st century, with systematically greater increases for RCPs describing stronger radiative forcings. Under RCP8.5, droughts exceeding 40% of analyzed land area are projected by nearly half of the simulations. This increase in drought severity has a strong signal-to-noise ratio at the global scale, and Southern Europe, the Middle East, the Southeast United States, Chile, and South West Australia are identified as possible hotspots for future water security issues. The uncertainty due to GIMs is greater than that from global climate models, particularly if including a GIM that accounts for the dynamic response of plants to CO2 and climate, as this model simulates little or no increase in drought frequency. Our study demonstrates that different representations of terrestrial water-cycle processes in GIMs are responsible for a much larger uncertainty in the response of hydrological drought to climate change than previously thought. When assessing the impact of climate change on hydrology, it is therefore critical to consider a diverse range of GIMs to better capture the uncertainty.
Water Resources Research | 2011
Yoshihide Wada; L.P.H. van Beek; Daniel Viviroli; Hans H. Dürr; Rolf Weingartner; Marc F. P. Bierkens
[1] This paper assesses global water stress at a finer temporal scale compared to conventional assessments. To calculate time series of global water stress at a monthly time scale, global water availability, as obtained from simulations of monthly river discharge from the companion paper, is confronted with global monthly water demand. Water demand is defined here as the volume of water required by users to satisfy their needs. Water demand is calculated for the benchmark year of 2000 and contrasted against blue water availability, reflecting climatic variability over the period 1958–2001. Despite the use of the single benchmark year with monthly variations in water demand, simulated water stress agrees well with long‐term records of observed water shortage in temperate, (sub)tropical, and (semi)arid countries, indicating that on shorter (i.e., decadal) time scales, climatic variability is often the main determinant of water stress. With the monthly resolution the number of people experiencing water scarcity increases by more than 40% compared to conventional annual assessments that do not account for seasonality and interannual variability. The results show that blue water stress is often intense and frequent in densely populated regions (e.g., India, United States, Spain, and northeastern China). By this method, regions vulnerable to infrequent but detrimental water stress could be equally identified (e.g., southeastern United Kingdom and northwestern Russia). Citation: Wada, Y., L. P. H. van Beek, D. Viviroli, H. H. Durr, R. Weingartner, and M. F. P. Bierkens (2011), Global monthly water stress: 2. Water demand and severity of water stress, Water Resour. Res., 47, W07518, doi:10.1029/2010WR009792.
Earth System Dynamics Discussions | 2013
Yoshihide Wada; Dominik Wisser; Marc F. P. Bierkens
To sustain growing food demand and increasing standard of living, global water withdrawal and consumptive water use have been increasing rapidly. To analyze the human perturbation on water resources consistently over large scales, a number of macro-scale hydrological models (MHMs) have been developed in recent decades. However, few models consider the interaction between terrestrial water fluxes, and human activities and associated water use, and even fewer models distinguish water use from surface water and groundwater resources. Here, we couple a global water demand model with a global hydrological model and dynamically simulate daily water withdrawal and consumptive water use over the period 1979–2010, using two reanalysis products: ERA-Interim and MERRA. We explicitly take into account the mutual feedback between supply and demand, and implement a newly developed water allocation scheme to distinguish surface water and groundwater use. Moreover, we include a new irrigation scheme, which works dynamically with a daily surface and soil water balance, and incorporate the newly available extensive Global Reservoir and Dams data set (GRanD). Simulated surface water and groundwater withdrawals generally show good agreement with reported national and subnational statistics. The results show a consistent increase in both surface water and groundwater use worldwide, with a more rapid increase in groundwater use since the 1990s. Human impacts on terrestrial water storage (TWS) signals are evident, altering the seasonal and interannual variability. This alteration is particularly large over heavily regulated basins such as the Colorado and the Columbia, and over the major irrigated basins such as the Mississippi, the Indus, and the Ganges. Including human water use and associated reservoir operations generally improves the correlation of simulated TWS anomalies with those of the GRACE observations.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Rutger Dankers; Nigel W. Arnell; Douglas B. Clark; Pete Falloon; B M Fekete; Simon N. Gosling; Jens Heinke; Hyungjun Kim; Yoshimitsu Masaki; Yusuke Satoh; Tobias Stacke; Yoshihide Wada; Dominik Wisser
Climate change due to anthropogenic greenhouse gas emissions is expected to increase the frequency and intensity of precipitation events, which is likely to affect the probability of flooding into the future. In this paper we use river flow simulations from nine global hydrology and land surface models to explore uncertainties in the potential impacts of climate change on flood hazard at global scale. As an indicator of flood hazard we looked at changes in the 30-y return level of 5-d average peak flows under representative concentration pathway RCP8.5 at the end of this century. Not everywhere does climate change result in an increase in flood hazard: decreases in the magnitude and frequency of the 30-y return level of river flow occur at roughly one-third (20–45%) of the global land grid points, particularly in areas where the hydrograph is dominated by the snowmelt flood peak in spring. In most model experiments, however, an increase in flooding frequency was found in more than half of the grid points. The current 30-y flood peak is projected to occur in more than 1 in 5 y across 5–30% of land grid points. The large-scale patterns of change are remarkably consistent among impact models and even the driving climate models, but at local scale and in individual river basins there can be disagreement even on the sign of change, indicating large modeling uncertainty which needs to be taken into account in local adaptation studies.
Environmental Research Letters | 2014
Yoshihide Wada; Marc F. P. Bierkens
Overuse of surface water and an increasing reliance on nonrenewable groundwater resources have been reported over various regions of the world, casting significant doubt on the sustainable water supply and food production met by irrigation. To assess the limitations of global water resources, numerous indicators have been developed, but they rarely consider nonrenewable water use. In addition, surface water over-abstraction is rarely assessed in the context of human and environmental water needs. Here, we perform a transient assessment of global water use over the historical period 1960–2010 as well as the future projections of 2011–2099, using a newly developed indicator: the blue water sustainability index (BlWSI). The BlWSI incorporates both nonrenewable groundwater use and nonsustainable water use that compromises environmental flow requirements. Our results reveal an increasing trend of water consumed from nonsustainable surface water and groundwater resources over the historical period (∼30%), and this increase is projected to continue further towards the end of this century (∼40%). The global amount of nonsustainable water consumption has been increasing especially since the late 1990s, despite a wetter climate and increasing water availability during this period. The BlWSI is the first tool suitable for consistently evaluating the renewability and degradation of surface water and groundwater resources as a result of human water over-abstraction. S Online supplementary data available from stacks.iop.org/ERL/9/104003/mmedia
Environmental Research Letters | 2013
Yoshihide Wada; Ludovicus P. H. van Beek; Niko Wanders; Marc F. P. Bierkens
Over the past 50 years, human water use has more than doubled and affected streamflow over various regions of the world. However, it remains unclear to what degree human water consumption intensifies hydrological drought (the occurrence of anomalously low streamflow). Here, we quantify over the period 1960‐2010 the impact of human water consumption on the intensity and frequency of hydrological drought worldwide. The results show that human water consumption substantially reduced local and downstream streamflow over Europe, North America and Asia, and subsequently intensified the magnitude of hydrological droughts by 10‐500%, occurring during nation- and continent-wide drought events. Also, human water consumption alone increased global drought frequency by 27 ( 6)%. The intensification of drought frequency is most severe over Asia (35 7%), but also substantial over North America (25 6%) and Europe (20 5%). Importantly, the severe drought conditions are driven primarily by human water consumption over many parts of these regions. Irrigation is responsible for the intensification of hydrological droughts over the western and central US, southern Europe and Asia, whereas the impact of industrial and households’ consumption on the intensification is considerably larger over the eastern US and western and central Europe. Our findings reveal that human water consumption is one of the more important mechanisms intensifying hydrological drought, and is likely to remain as a major factor affecting drought intensity and frequency in the coming decades.