Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoshihiro Komatsu is active.

Publication


Featured researches published by Yoshihiro Komatsu.


Molecular and Cellular Biology | 2008

Oct4/Sox2-Regulated miR-302 Targets Cyclin D1 in Human Embryonic Stem Cells†

Deborah A. Greer Card; Pratibha B. Hebbar; Leping Li; Kevin W. Trotter; Yoshihiro Komatsu; Yuji Mishina; Trevor K. Archer

ABSTRACT Oct4 and Sox2 are transcription factors required for pluripotency during early embryogenesis and for the maintenance of embryonic stem cell (ESC) identity. Functional mechanisms contributing to pluripotency are expected to be associated with genes transcriptionally activated by these factors. Here, we show that Oct4 and Sox2 bind to a conserved promoter region of miR-302, a cluster of eight microRNAs expressed specifically in ESCs and pluripotent cells. The expression of miR-302a is dependent on Oct4/Sox2 in human ESCs (hESCs), and miR-302a is expressed at the same developmental stages and in the same tissues as Oct4 during embryogenesis. miR-302a is predicted to target many cell cycle regulators, and the expression of miR-302a in primary and transformed cell lines promotes an increase in S-phase and a decrease in G1-phase cells, reminiscent of an ESC-like cell cycle profile. Correspondingly, the inhibition of miR-302 causes hESCs to accumulate in G1 phase. Moreover, we show that miR-302a represses the productive translation of an important G1 regulator, cyclin D1, in hESCs. The transcriptional activation of miR-302 and the translational repression of its targets, such as cyclin D1, may provide a link between Oct4/Sox2 and cell cycle regulation in pluripotent cells.


Mechanisms of Development | 2002

Targeted disruption of the Tab1 gene causes embryonic lethality and defects in cardiovascular and lung morphogenesis

Yoshihiro Komatsu; Hiroshi Shibuya; Naoki Takeda; Jun Ninomiya-Tsuji; Teruhito Yasui; Kenji Miyado; Tomohisa Sekimoto; Naoto Ueno; Kunihiro Matsumoto; Gen Yamada

The transforming growth factor-beta (TGF-beta) superfamily consists of a group of secreted signaling molecules that perform important roles in the regulation of cell growth and differentiation. TGF-beta activated kinase-1 binding protein-1 (TAB1) was identified as a molecule that activates TGF-beta activated kinase-1 (TAK1). Recent studies have revealed that the TAB1-TAK1 interaction plays an important role in signal transduction in vitro, but little is known about the role of these molecules in vivo. To investigate the role of TAB1 during development, we cloned the murine Tab1 gene and disrupted it by homologous recombination. Homozygous Tab1 mutant mice died, exhibiting a bloated appearance with extensive edema and hemorrhage at the late stages of gestation. By histological examinations, it was revealed that mutant embryos exhibited cardiovascular and lung dysmorphogenesis. Tab1 mutant embryonic fibroblast cells displayed drastically reduced TAK1 kinase activities and decreased sensitivity to TGF-beta stimulation. These results indicate a possibility that TAB1 plays an important role in mammalian embryogenesis and is required for TAK1 activation in TGF-beta signaling.


Journal of Biological Chemistry | 2008

TAK1-binding Protein 1, TAB1, Mediates Osmotic Stress-induced TAK1 Activation but Is Dispensable for TAK1-mediated Cytokine Signaling

Maiko Inagaki; Emily Omori; Jae Young Kim; Yoshihiro Komatsu; Greg Scott; Manas K. Ray; Gen Yamada; Kunihiro Matsumoto; Yuji Mishina; Jun Ninomiya-Tsuji

TAK1 kinase is an indispensable intermediate in several cytokine signaling pathways including tumor necrosis factor, interleukin-1, and transforming growth factor-β signaling pathways. TAK1 also participates in stress-activated intracellular signaling pathways such as osmotic stress signaling pathway. TAK1-binding protein 1 (TAB1) is constitutively associated with TAK1 through its C-terminal region. Although TAB1 is known to augment TAK1 catalytic activity when it is overexpressed, the role of TAB1 under physiological conditions has not yet been identified. In this study, we determined the role of TAB1 in TAK1 signaling by analyzing TAB1-deficient mouse embryonic fibroblasts (MEFs). Tumor necrosis factor- and interleukin-1-induced activation of TAK1 was entirely normal in Tab1-deficient MEFs and could activate both mitogen-activated protein kinases and NF-κB. In contrast, we found that osmotic stress-induced activation of TAK1 was largely impaired in Tab1-deficient MEFs. Furthermore, we showed that the C-terminal 68 amino acids of TAB1 were sufficient to mediate osmotic stress-induced TAK1 activation. Finally, we attempted to determine the mechanism by which TAB1 activates TAK1. We found that TAK1 is spontaneously activated when the concentration is increased and that it is totally dependent on TAB1. Cell shrinkage under the osmotic stress condition increases the concentration of TAB1-TAK1 and may oligomerize and activate TAK1 in a TAB1-dependent manner. These results demonstrate that TAB1 mediates TAK1 activation only in a subset of TAK1 pathways that are mediated through spontaneous oligomerization of TAB1-TAK1.


Genesis | 2009

Bmp2 and Bmp4 Genetically Interact to Support Multiple Aspects of Mouse Development Including Functional Heart Development

Takashi Uchimura; Yoshihiro Komatsu; Momo Tanaka; Kelly McCann; Yuji Mishina

Bone morphogenetic proteins (BMPs) have multiple roles during embryogenesis. Current data indicate that the dosage of BMPs is tightly regulated for normal development in mice. Since Bmp2 or Bmp4 homozygous mutant mice show early embryonic lethality, we generated compound heterozygous mice for Bmp2 and Bmp4 to explore the impact of lowered dosage of these BMP ligands. Genotyping pups bred between Bmp2 and Bmp4 heterozygous mice revealed that the ratio of adult compound heterozygous mice for Bmp2 and Bmp4 is much lower than expected. During embryogenesis, the compound heterozygous embryos showed several abnormalities, including defects in eye formation, body wall closure defects, and ventricular septal defects (VSD) in the heart. However, the ratio of the compound heterozygous embryos was the same as expected. Caesarean sections at E18.5 revealed that half of the compound heterozygotes died soon after birth, and the majority of the dead individuals exhibited VSD. Survivors were able to grow to adults, but their body weight was significantly lower than control littermates. They demonstrated progressive abnormalities in the heart, eventually showing a branched leaflet in atrioventricular valves. These results suggest that the dosage of both BMP2 and 4 is critical for functional heart formation during embryogenesis and after birth. genesis 47:374–384, 2009.


Journal of Bone and Mineral Research | 2013

Augmentation of smad‐dependent BMP signaling in neural crest cells causes craniosynostosis in mice

Yoshihiro Komatsu; Paul B. Yu; Nobuhiro Kamiya; Haichun Pan; Tomokazu Fukuda; Gregory Scott; Manas K. Ray; Ken Ichi Yamamura; Yuji Mishina

Craniosynostosis describes conditions in which one or more sutures of the infant skull are prematurely fused, resulting in facial deformity and delayed brain development. Approximately 20% of human craniosynostoses are thought to result from gene mutations altering growth factor signaling; however, the molecular mechanisms by which these mutations cause craniosynostosis are incompletely characterized, and the causative genes for diverse types of syndromic craniosynostosis have yet to be identified. Here, we show that enhanced bone morphogenetic protein (BMP) signaling through the BMP type IA receptor (BMPR1A) in cranial neural crest cells, but not in osteoblasts, causes premature suture fusion in mice. In support of a requirement for precisely regulated BMP signaling, this defect was rescued on a Bmpr1a haploinsufficient background, with corresponding normalization of Smad phosphorylation. Moreover, in vivo treatment with LDN‐193189, a selective chemical inhibitor of BMP type I receptor kinases, resulted in partial rescue of craniosynostosis. Enhanced signaling of the fibroblast growth factor (FGF) pathway, which has been implicated in craniosynostosis, was observed in both mutant and rescued mice, suggesting that augmentation of FGF signaling is not the sole cause of premature fusion found in this model. The finding that relatively modest augmentation of Smad‐dependent BMP signaling leads to premature cranial suture fusion suggests an important contribution of dysregulated BMP signaling to syndromic craniosynostoses and potential strategies for early intervention.


Blood | 2012

TAK1 kinase signaling regulates embryonic angiogenesis by modulating endothelial cell survival and migration

Sho Morioka; Maiko Inagaki; Yoshihiro Komatsu; Yuji Mishina; Kunihiro Matsumoto; Jun Ninomiya-Tsuji

TGF-β activated kinase 1 (TAK1) is a mediator of various cytokine signaling pathways. Germline deficiency of Tak1 causes multiple abnormalities, including dilated blood vessels at midgestation. However, the mechanisms by which TAK1 regulates vessel formation have not been elucidated. TAK1 binding proteins 1 and 2 (TAB1 and TAB2) are activators of TAK1, but their roles in embryonic TAK1 signaling have not been determined. In the present study, we characterized mouse embryos harboring endothelial-specific deletions of Tak1, Tab1, or Tab2 and found that endothelial TAK1 and TAB2, but not TAB1, were critically involved in vascular formation. TAK1 deficiency in endothelial cells caused increased cell death and vessel regression at embryonic day 10.5 (E10.5). Deletion of TNF signaling largely rescued endothelial cell death in TAK1-deficient embryos at E10.5. However, embryos deficient in both TAK1 and TNF signaling still exhibited dilated capillary networks at E12.5. TAB2 deficiency caused reduced TAK1 activity, resulting in abnormal capillary blood vessels, similar to the compound deficiency of TAK1 and TNF signaling. Ablation of either TAK1 or TAB2 impaired cell migration and tube formation. Our results show that endothelial TAK1 signaling is important for 2 biologic processes in angiogenesis: inhibiting TNF-dependent endothelial cell death and promoting TNF-independent angiogenic cell migration.


Cellular and Molecular Life Sciences | 2013

Establishment of left–right asymmetry in vertebrate development: the node in mouse embryos

Yoshihiro Komatsu; Yuji Mishina

Establishment of vertebrate left–right asymmetry is a critical process for normal embryonic development. After the discovery of genes expressed asymmetrically along the left–right axis in chick embryos in the mid 1990s, the molecular mechanisms responsible for left–right patterning in vertebrate embryos have been studied extensively. In this review article, we discuss the mechanisms by which the initial symmetry along the left–right axis is broken in the mouse embryo. We focus on the role of primary cilia and molecular mechanisms of ciliogenesis at the node when symmetry is broken and left–right asymmetry is established. The node is considered a signaling center for early mouse embryonic development, and the results we review here have led to a better understanding of how the node functions and establishes left–right asymmetry.


Development | 2015

Augmented BMP signaling in the neural crest inhibits nasal cartilage morphogenesis by inducing p53-mediated apoptosis.

Satoru Hayano; Yoshihiro Komatsu; Haichun Pan; Yuji Mishina

Bone morphogenetic protein (BMP) signaling plays many roles in skull morphogenesis. We have previously reported that enhanced BMP signaling through the BMP type IA receptor (BMPR1A) in cranial neural crest cells causes craniosynostosis during postnatal development. Additionally, we observed that 55% of Bmpr1a mutant mice show neonatal lethality characterized by a distended gastrointestinal tract. Here, we show that severely affected mutants exhibit defective nasal cartilage, failure of fusion between the nasal septum and the secondary palate, and higher levels of phosphorylated SMAD1 and SMAD5 in the nasal tissue. TUNEL demonstrated an increase in apoptosis in both condensing mesenchymal tissues and cartilage of the nasal region in mutants. The levels of p53 (TRP53) tumor suppressor protein were also increased in the same tissue. Injection of pifithrin-α, a chemical inhibitor of p53, into pregnant mice prevented neonatal lethality while concomitantly reducing apoptosis in nasal cartilage primordia, suggesting that enhanced BMP signaling induces p53-mediated apoptosis in the nasal cartilage. The expression of Bax and caspase 3, downstream targets of p53, was increased in the mutants; however, the p53 expression level was unchanged. It has been reported that MDM2 interacts with p53 to promote degradation. We found that the amount of MDM2-p53 complex was decreased in all mutants, and the most severely affected mutants had the largest decrease. Our previous finding that the BMP signaling component SMAD1 prevents MDM2-mediated p53 degradation coupled with our new data indicate that augmented BMP signaling induces p53-mediated apoptosis by prevention of p53 degradation in developing nasal cartilage. Thus, an appropriate level of BMP signaling is required for proper craniofacial morphogenesis. Summary: BMP signaling levels control p53-mediated apoptosis through SMAD1/5 phosphorylation and MDM2-p53 complex formation in cranial neural crest cells, regulating nasal cartilage morphogenesis.


Developmental Dynamics | 2007

BMP type I receptor ALK2 is essential for proper patterning at late gastrulation during mouse embryogenesis.

Yoshihiro Komatsu; Gregory Scott; Andre Nagy; Vesa Kaartinen; Yuji Mishina

Bone morphogenetic proteins (BMPs) have multiple functions during vertebrate development. Previously, it was shown that BMP type I receptor ALK2 (also known as ACVRI, ActRI, or ActRIA) was important for normal mouse gastrulation by deleting exon 4 or exon 5 of Alk2. Recently, flanking exon 7 by loxP sites generated a conditional allele for Alk2. To assess whether the deletion of exon 7 causes functional null of ALK2, and does not produce a dominant negative form or a partially functional form of ALK2, we performed a comparative analysis between Alk2 homozygous mutant embryos with an exon 5 deletion (Alk2Δ5/Δ5) and embryos with an exon 7 deletion (Alk2Δ7/Δ7). Both Alk2Δ5/Δ5 and Alk2Δ7/Δ7 mutants showed identical morphological gastrulation defects. Histological examinations and molecular marker analyses revealed identical abnormal gastrulation phenotypes in Alk2Δ5/Δ5 and Alk2Δ7/Δ7 mutants. Although Fgf8 was expressed in the primitive streak of Alk2Δ5/Δ5 and Alk2Δ7/Δ7 mutants, Brachyury, Wnt3a, and Tbx6 were dramatically downregulated in Alk2Δ5/Δ5 and Alk2Δ7/Δ7 mutants. These results indicate that deletion of exon 7 for Alk2 leads to a functionally null mutation in vivo, and Alk2 is crucial for sustaining the proper gastrulation events in early mouse embryogenesis. Developmental Dynamics 236:512–517, 2007. Published 2006 Wiley‐Liss, Inc.


Biochemical and Biophysical Research Communications | 2011

Potential contribution of neural crest cells to dental enamel formation

Shih Kai Wang; Yoshihiro Komatsu; Yuji Mishina

Neural crest cells (NCCs) are a multipotent embryonic cell population that contributes to the formation of various craniofacial structures including teeth. It has been generally believed that dental enamel is an ectodermal derivative, whereas the dentin-pulp complex and the surrounding supporting tissues originate from NCC-derived mesenchyme. These traditional concepts stem mainly from several early studies of fishes and amphibians. Recently, Wnt1-Cre/R26R mice, a mouse model for NCC lineage analysis, revealed the contribution of NCCs to mammalian tooth development. However, the discrepancy of expression patterns between different NCC-specific transgenic mouse lines makes it compulsory to revisit the cell lineage in mammalian tooth development. Here, we reevaluated the NCC lineage during mouse tooth development by using P0-Cre/R26R mice, another NCC-specific transgenic mouse line. Inconsistent with the traditional concepts, we observed the potential contribution of NCCs to developing enamel organ and enamel formation. We also demonstrated that the P0-Cre transgene was specifically expressed in migrating NCC in the hindbrain region, where NCC contributes to tooth, validating their applicability for NCC lineage analysis. Our unanticipated finding may change the general understanding of tooth development and provide new insights into dental stem cell biology.

Collaboration


Dive into the Yoshihiro Komatsu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manas K. Ray

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory Scott

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jun Ninomiya-Tsuji

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Kazuo Noda

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Gen Yamada

Wakayama Medical University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge