Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoshihiro Ozeki is active.

Publication


Featured researches published by Yoshihiro Ozeki.


The Plant Cell | 2010

A novel glucosylation reaction on anthocyanins catalyzed by acyl-glucose-dependent glucosyltransferase in the petals of carnation and delphinium.

Yuki Matsuba; Nobuhiro Sasaki; Masayuki Tera; Masachika Okamura; Yutaka Abe; Emi Okamoto; Haruka Nakamura; Hisakage Funabashi; Makoto Takatsu; Mikako Saito; Hideaki Matsuoka; Kazuo Nagasawa; Yoshihiro Ozeki

This work describes a glucosylation reaction at the 5/7 positions of anthocyanins in the petals of carnations and delphiniums. Unusually, this reaction is catalyzed by acyl-glucose–dependent glucosyltransferases that belong to glycoside hydrolase family 1. This modification mechanism may play an important role in generating variation in anthocyanins. Glucosylation of anthocyanin in carnations (Dianthus caryophyllus) and delphiniums (Delphinium grandiflorum) involves novel sugar donors, aromatic acyl-glucoses, in a reaction catalyzed by the enzymes acyl-glucose–dependent anthocyanin 5(7)-O-glucosyltransferase (AA5GT and AA7GT). The AA5GT enzyme was purified from carnation petals, and cDNAs encoding carnation Dc AA5GT and the delphinium homolog Dg AA7GT were isolated. Recombinant Dc AA5GT and Dg AA7GT proteins showed AA5GT and AA7GT activities in vitro. Although expression of Dc AA5GT in developing carnation petals was highest at early stages, AA5GT activity and anthocyanin accumulation continued to increase during later stages. Neither Dc AA5GT expression nor AA5GT activity was observed in the petals of mutant carnations; these petals accumulated anthocyanin lacking the glucosyl moiety at the 5 position. Transient expression of Dc AA5GT in petal cells of mutant carnations is expected to result in the transfer of a glucose moiety to the 5 position of anthocyanin. The amino acid sequences of Dc AA5GT and Dg AA7GT showed high similarity to glycoside hydrolase family 1 proteins, which typically act as β-glycosidases. A phylogenetic analysis of the amino acid sequences suggested that other plant species are likely to have similar acyl-glucose–dependent glucosyltransferases.


Gene | 1999

Genomic organization of the genes encoding dihydroflavonol 4-reductase for flower pigmentation in the Japanese and common morning glories

Yoshishige Inagaki; Yasuyo Johzuka-Hisatomi; Tomoko Mori; Sakiko Takahashi; Yasuo Hayakawa; Surin Peyachoknagul; Yoshihiro Ozeki; Shigeru Iida

Genomic DNA segments (approximately 17kb) containing three DFR genes in the Japanese and common morning glories were sequenced. The three DFR genes in both plants were found to be arranged in a tandem array, and all of them comprised six exons with identical intron positions. Their DFR-B genes carrying longer introns than the DFR-A and DFR-C genes were expressed extensively in the young buds of pigmented flowers, and the transcription starting site for the DFR-B mRNA of the Japanese morning glory was determined. The DFR-B gene of the common morning glory was expressed considerably in stems, moderately in sepals and leaves, whereas the DFR-A and DFR-C genes of the same plant were expressed scarcely but significantly in the young flower buds and stems. Several novel mobile element-like sequences of around 200bp were found in the genomic DFR regions. A phylogenetic tree indicated that each DFR gene in the Japanese morning glory is most closely related to the corresponding DFR gene in the common morning glory, and that the DFR-B gene is the most diversified gene among the three DFR genes. These structural and functional features of the DFR genes and their evolutionary implications are discussed.


FEBS Letters | 1987

Nucleotide sequence of the PR-1 gene of Nicotiana tabacum

Masahiro Ohshima; Makoto Matsuoka; Naoki Yamamoto; Yoshiyuki Tanaka; Yuriko Kano-Murakami; Yoshihiro Ozeki; Akira Kato; Naoki Harada; Yuko Ohashi

A gene encoding one of the pathogenesis‐related proteins, PR1a, and two related pseudogenes were isolated from Nicotiana tabacum. The cloned PR1a gene (pPR‐γ) and one of the pseudogenes (pPR‐α) were sequenced and found to have similar structures. The sequence of pPR‐γ was quite similar to that of the cDNA clone of PR1a. The plasmid pPR‐γ did not contain an intron and had a typical promoter sequence in the 5′‐flanking region.


Molecular Genetics and Genomics | 1997

Somatic variation during long term subculturing of plant cells caused by insertion of a transposable element in a phenylalanine ammonia-lyase (PAL) gene

Yoshihiro Ozeki; Eric Davies; Junko Takeda

Abstract We have identified a new En/Spm-like transposable element, Tdc1, in the 5′ flanking region of a phenylalanine ammonia-lyase gene (gDcPAL1) that is normally induced by transferring cells of carrot suspension cultures to fresh liquid medium (transfer or dilution effect). The initial integration into gDcPAL1 occurred more than 4 years after culture initiation. Tdc1 was first detected in gDcPAL1 genomic clones of a genomic library made from cells of the same cultured cell line 7 years after its initiation and thus following repeated subculturing. Twelve years after initiation, about 5–10% of the cells had Tdc1 inserted into the gDcPAL1 gene, indicating that Tdc1 insertion into gDcPAL1 occurred in one (or more) cell(s) during the first 4–7 years of subculturing. These mutant cells did not disappear during numerous passages; instead the proportion of cells having this Tdc1 inserted into gDcPAL1 has been increasing over the last 5 years. The promoter activity and the inducibility by transfer/dilution of the gDcPAL1 gene harboring Tdc1 is reduced relative to wild type. Finally, we show that insertion of a transposable element is one of the mechanisms that can cause variation of plant cell cultures during repeated subculture.


Scientia Horticulturae | 2000

Flavonoid biosynthesis in white-flowered Sim carnations (Dianthus caryophyllus)

Masami Mato; Takashi Onozaki; Yoshihiro Ozeki; Daisuke Higeta; Yoshio Itoh; Yasuko Yoshimoto; Hiroshi Ikeda; Hiroyuki Yoshida; Michio Shibata

Abstract Analysis of flavonoid composition and gene expression of enzymes involved in anthocyanin synthesis in flowers of four acyanic and one cyanic cultivar of Sim carnation showed that the acyanic flower cultivars are divided into three types. The first includes two normal white cultivars, ‘U Conn Sim’ and ‘White Sim’; the second includes a nearly pure white cultivar, ‘Kaly’; and the third includes a nearly pure white cultivar, ‘White Mind’. ‘U Conn Sim’ and ‘White Sim’ accumulated flavonol glycosides and lacked anthocyanins. The transcription of the several genes of enzymes involved in flavonoid biosynthesis were reduced at a later flowering stage than the cyanic cultivar, especially the genes encoding dihydroflavonol 4-reductase and anthocyanidin synthase. ‘Kaly’ accumulated flavanone glycosides and a small amount of flavonol and flavone glycosides by blocking the transcription of the gene encoding flavanone 3-hydroxylase, in addition to the transcriptional reduction of the genes for flavonoid biosynthesis at a later flowering stage. Although ‘White Mind’ contains little flavonoid, the position of the block on flavonoid biosynthesis in ‘White Mind’ is not known.


Plant Cell Tissue and Organ Culture | 1985

Effects of inoculum density, zeatin and sucrose on anthocyanin accumulation in a carrot suspension culture

Yoshihiro Ozeki; Atsushi Komamine

Anthocyanin formation in a suspension culture of Daucus carota is induced by transfer from medium containing 2,4-dichlorophenoxyacetic acid (2,4-D) to one lacking 2,4-D. The specific yields were strongly influenced by the inoculum density. Inoculum density altered the effect of zeatin concentration on anthocyanin accumulation. The in part by increasing the sucrose levels. It was inferred from the results that sucrose was exhausted at a low concentration of sucrose and at a high cell density, resulting in the decrease of yield of anthocyanin.


DNA Research | 2014

Sequence Analysis of the Genome of Carnation (Dianthus caryophyllus L.)

Masafumi Yagi; Shunichi Kosugi; Hideki Hirakawa; Akemi Ohmiya; Koji Tanase; Taro Harada; Kyutaro Kishimoto; Masayoshi Nakayama; Kazuo Ichimura; Takashi Onozaki; Hiroyasu Yamaguchi; Nobuhiro Sasaki; Taira Miyahara; Yuzo Nishizaki; Yoshihiro Ozeki; Noriko Nakamura; Takamasa Suzuki; Yoshikazu Tanaka; Shusei Sato; Kenta Shirasawa; Sachiko Isobe; Yoshinori Miyamura; Akiko Watanabe; Shinobu Nakayama; Yoshie Kishida; Mitsuyo Kohara; Satoshi Tabata

The whole-genome sequence of carnation (Dianthus caryophyllus L.) cv. ‘Francesco’ was determined using a combination of different new-generation multiplex sequencing platforms. The total length of the non-redundant sequences was 568 887 315 bp, consisting of 45 088 scaffolds, which covered 91% of the 622 Mb carnation genome estimated by k-mer analysis. The N50 values of contigs and scaffolds were 16 644 bp and 60 737 bp, respectively, and the longest scaffold was 1 287 144 bp. The average GC content of the contig sequences was 36%. A total of 1050, 13, 92 and 143 genes for tRNAs, rRNAs, snoRNA and miRNA, respectively, were identified in the assembled genomic sequences. For protein-encoding genes, 43 266 complete and partial gene structures excluding those in transposable elements were deduced. Gene coverage was ∼98%, as deduced from the coverage of the core eukaryotic genes. Intensive characterization of the assigned carnation genes and comparison with those of other plant species revealed characteristic features of the carnation genome. The results of this study will serve as a valuable resource for fundamental and applied research of carnation, especially for breeding new carnation varieties. Further information on the genomic sequences is available at http://carnation.kazusa.or.jp.


Genetics | 2010

Miniature Inverted-Repeat Transposable Elements of Stowaway Are Active in Potato

Masaki Momose; Yutaka Abe; Yoshihiro Ozeki

Miniature inverted-repeat transposable elements (MITEs) are dispersed in large numbers within the genomes of eukaryotes although almost all are thought to be inactive. Plants have two major groups of such MITEs: Tourist and Stowaway. Mobile MITEs have been reported previously in rice but no active MITEs have been found in dicotyledons. Here, we provide evidence that Stowaway MITEs can be mobilized in the potato and that one of them causes a change of tuber skin color as an obvious phenotypic variation. In an original red-skinned potato clone, the gene encoding for a flavonoid 3′,5′-hydroxylase, which is involved in purple anthocyanin synthesis, has been inactivated by the insertion of a Stowaway MITE named dTstu1 within the first exon. However, dTstu1 is absent from this gene in a purple somaclonal variant that was obtained as a regenerated plant from a protoplast culture of the red-skinned potato. The color change was attributed to reversion of flavonoid 3′,5′-hydroxylase function by removal of dTstu1 from the gene. In this purple variant another specific transposition event has occurred involving a MITE closely related to dTstu1. Instead of being fossil elements, Stowaway MITEs, therefore, still have the ability to become active under particular conditions as represented by tissue culturing.


Plant Journal | 2012

Tandemly arranged chalcone synthase A genes contribute to the spatially regulated expression of siRNA and the natural bicolor floral phenotype in Petunia hybrida

Yasumasa Morita; Ryoko Saito; Yusuke Ban; Natsu Tanikawa; Kazuyuki Kuchitsu; Toshio Ando; Manabu Yoshikawa; Yoshiki Habu; Yoshihiro Ozeki; Masayoshi Nakayama

The natural bicolor floral traits of the horticultural petunia (Petunia hybrida) cultivars Picotee and Star are caused by the spatial repression of the chalcone synthase A (CHS-A) gene, which encodes an anthocyanin biosynthetic enzyme. Here we show that Picotee and Star petunias carry the same short interfering RNA (siRNA)-producing locus, consisting of two intact CHS-A copies, PhCHS-A1 and PhCHS-A2, in a tandem head-to-tail orientation. The precursor CHS mRNAs are transcribed from the two CHS-A copies throughout the bicolored petals, but the mature CHS mRNAs are not found in the white tissues. An analysis of small RNAs revealed the accumulation of siRNAs of 21 nucleotides that originated from the exon 2 region of both CHS-A copies. This accumulation is closely correlated with the disappearance of the CHS mRNAs, indicating that the bicolor floral phenotype is caused by the spatially regulated post-transcriptional silencing of both CHS-A genes. Linkage between the tandemly arranged CHS-A allele and the bicolor floral trait indicates that the CHS-A allele is a necessary factor to confer the trait. We suppose that the spatially regulated production of siRNAs in Picotee and Star flowers is triggered by another putative regulatory locus, and that the silencing mechanism in this case may be different from other known mechanisms of post-transcriptional gene silencing in plants. A sequence analysis of wild Petunia species indicated that these tandem CHS-A genes originated from Petunia integrifolia and/or Petunia inflata, the parental species of P. hybrida, as a result of a chromosomal rearrangement rather than a gene duplication event.


Plant and Cell Physiology | 2009

Detection of DOPA 4,5-Dioxygenase (DOD) Activity Using Recombinant Protein Prepared from Escherichia coli Cells Harboring cDNA Encoding DOD from Mirabilis jalapa

Nobuhiro Sasaki; Yutaka Abe; Yukihiro Goda; Taiji Adachi; Kichiji Kasahara; Yoshihiro Ozeki

Betalains are synthesized in flowers, fruits and other tissues of the plant order Caryophyllales. Betalamic acid is the chromophore of betalain pigments synthesized by a ring-cleaving enzyme reaction on l-dihydroxyphenylalanine (DOPA). Although reverse genetic evidence has proven that DOPA 4,5-dioxygenase (DOD) is a key enzyme of betalain biosynthesis, all attempts to detect recombinant plant DOD activity in vitro have failed. Here, we report on the formation of betalamic acid from DOPA under suitable assay conditions using recombinant MjDOD produced by Escherichia coli. This is the first report showing biochemical evidence for DOD activity in vitro.

Collaboration


Dive into the Yoshihiro Ozeki's collaboration.

Top Co-Authors

Avatar

Nobuhiro Sasaki

Tokyo University of Agriculture and Technology

View shared research outputs
Top Co-Authors

Avatar

Akiyo Yamada

Tokyo University of Agriculture and Technology

View shared research outputs
Top Co-Authors

Avatar

Yoshio Itoh

Tokyo University of Agriculture and Technology

View shared research outputs
Top Co-Authors

Avatar

Yutaka Abe

Tokyo University of Agriculture and Technology

View shared research outputs
Top Co-Authors

Avatar

Taira Miyahara

Tokyo University of Agriculture and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge