Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoshihiro Takaki is active.

Publication


Featured researches published by Yoshihiro Takaki.


Nucleic Acids Research | 2011

Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group

Takuro Nunoura; Yoshihiro Takaki; Jungo Kakuta; Shinro Nishi; Junichi Sugahara; Hiromi Kazama; Gab Joo Chee; Masahira Hattori; Akio Kanai; Haruyuki Atomi; Ken Takai; Hideto Takami

The domain Archaea has historically been divided into two phyla, the Crenarchaeota and Euryarchaeota. Although regarded as members of the Crenarchaeota based on small subunit rRNA phylogeny, environmental genomics and efforts for cultivation have recently revealed two novel phyla/divisions in the Archaea; the ‘Thaumarchaeota’ and ‘Korarchaeota’. Here, we show the genome sequence of Candidatus ‘Caldiarchaeum subterraneum’ that represents an uncultivated crenarchaeotic group. A composite genome was reconstructed from a metagenomic library previously prepared from a microbial mat at a geothermal water stream of a sub-surface gold mine. The genome was found to be clearly distinct from those of the known phyla/divisions, Crenarchaeota (hyperthermophiles), Euryarchaeota, Thaumarchaeota and Korarchaeota. The unique traits suggest that this crenarchaeotic group can be considered as a novel archaeal phylum/division. Moreover, C. subterraneum harbors an ubiquitin-like protein modifier system consisting of Ub, E1, E2 and small Zn RING finger family protein with structural motifs specific to eukaryotic system proteins, a system clearly distinct from the prokaryote-type system recently identified in Haloferax and Mycobacterium. The presence of such a eukaryote-type system is unprecedented in prokaryotes, and indicates that a prototype of the eukaryotic protein modifier system is present in the Archaea.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Deep-sea vent ε-proteobacterial genomes provide insights into emergence of pathogens

Satoshi Nakagawa; Yoshihiro Takaki; Shigeru Shimamura; Anna-Louise Reysenbach; Ken Takai; Koki Horikoshi

Deep-sea vents are the light-independent, highly productive ecosystems driven primarily by chemolithoautotrophic microorganisms, in particular by ε-Proteobacteria phylogenetically related to important pathogens. We analyzed genomes of two deep-sea vent ε-Proteobacteria strains, Sulfurovum sp. NBC37-1 and Nitratiruptor sp. SB155-2, which provide insights not only into their unusual niche on the seafloor, but also into the origins of virulence in their pathogenic relatives, Helicobacter and Campylobacter species. The deep-sea vent ε-proteobacterial genomes encode for multiple systems for respiration, sensing and responding to environment, and detoxifying heavy metals, reflecting their adaptation to the deep-sea vent environment. Although they are nonpathogenic, both deep-sea vent ε-Proteobacteria share many virulence genes with pathogenic ε-Proteobacteria, including genes for virulence factor MviN, hemolysin, invasion antigen CiaB, and the N-linked glycosylation gene cluster. In addition, some virulence determinants (such as the H2-uptake hydrogenase) and genomic plasticity of the pathogenic descendants appear to have roots in deep-sea vent ε-Proteobacteria. These provide ecological advantages for hydrothermal vent ε-Proteobacteria who thrive in their deep-sea habitat and are essential for both the efficient colonization and persistent infections of their pathogenic relatives. Our comparative genomic analysis suggests that there are previously unrecognized evolutionary links between important human/animal pathogens and their nonpathogenic, symbiotic, chemolithoautotrophic deep-sea relatives.


PLOS ONE | 2013

Metagenomic Analysis of Viral Communities in (Hado)Pelagic Sediments

Mitsuhiro Yoshida; Yoshihiro Takaki; Masamitsu Eitoku; Takuro Nunoura; Ken Takai

In this study, we analyzed viral metagenomes (viromes) in the sedimentary habitats of three geographically and geologically distinct (hado)pelagic environments in the northwest Pacific; the Izu-Ogasawara Trench (water depth = 9,760 m) (OG), the Challenger Deep in the Mariana Trench (10,325 m) (MA), and the forearc basin off the Shimokita Peninsula (1,181 m) (SH). Virus abundance ranged from 106 to 1011 viruses/cm3 of sediments (down to 30 cm below the seafloor [cmbsf]). We recovered viral DNA assemblages (viromes) from the (hado)pelagic sediment samples and obtained a total of 37,458, 39,882, and 70,882 sequence reads by 454 GS FLX Titanium pyrosequencing from the virome libraries of the OG, MA, and SH (hado)pelagic sediments, respectively. Only 24−30% of the sequence reads from each virome library exhibited significant similarities to the sequences deposited in the public nr protein database (E-value <10−3 in BLAST). Among the sequences identified as potential viral genes based on the BLAST search, 95−99% of the sequence reads in each library were related to genes from single-stranded DNA (ssDNA) viral families, including Microviridae, Circoviridae, and Geminiviridae. A relatively high abundance of sequences related to the genetic markers (major capsid protein [VP1] and replication protein [Rep]) of two ssDNA viral groups were also detected in these libraries, thereby revealing a high genotypic diversity of their viruses (833 genotypes for VP1 and 2,551 genotypes for Rep). A majority of the viral genes predicted from each library were classified into three ssDNA viral protein categories: Rep, VP1, and minor capsid protein. The deep-sea sedimentary viromes were distinct from the viromes obtained from the oceanic and fresh waters and marine eukaryotes, and thus, deep-sea sediments harbor novel viromes, including previously unidentified ssDNA viruses.


PLOS ONE | 2012

A Deeply Branching Thermophilic Bacterium with an Ancient Acetyl-CoA Pathway Dominates a Subsurface Ecosystem

Hideto Takami; Hideki Noguchi; Yoshihiro Takaki; Ikuo Uchiyama; Atsushi Toyoda; Shinro Nishi; Gab Joo Chee; Wataru Arai; Takuro Nunoura; Takehiko Itoh; Masahira Hattori; Ken Takai

A nearly complete genome sequence of Candidatus ‘Acetothermum autotrophicum’, a presently uncultivated bacterium in candidate division OP1, was revealed by metagenomic analysis of a subsurface thermophilic microbial mat community. Phylogenetic analysis based on the concatenated sequences of proteins common among 367 prokaryotes suggests that Ca. ‘A. autotrophicum’ is one of the earliest diverging bacterial lineages. It possesses a folate-dependent Wood-Ljungdahl (acetyl-CoA) pathway of CO2 fixation, is predicted to have an acetogenic lifestyle, and possesses the newly discovered archaeal-autotrophic type of bifunctional fructose 1,6-bisphosphate aldolase/phosphatase. A phylogenetic analysis of the core gene cluster of the acethyl-CoA pathway, shared by acetogens, methanogens, some sulfur- and iron-reducers and dechlorinators, supports the hypothesis that the core gene cluster of Ca. ‘A. autotrophicum’ is a particularly ancient bacterial pathway. The habitat, physiology and phylogenetic position of Ca. ‘A. autotrophicum’ support the view that the first bacterial and archaeal lineages were H2-dependent acetogens and methanogenes living in hydrothermal environments.


Microbes and Environments | 2012

Microbial Diversity in Deep-sea Methane Seep Sediments Presented by SSU rRNA Gene Tag Sequencing

Takuro Nunoura; Yoshihiro Takaki; Hiromi Kazama; Miho Hirai; Juichiro Ashi; Hiroyuki Imachi; Ken Takai

Microbial community structures in methane seep sediments in the Nankai Trough were analyzed by tag-sequencing analysis for the small subunit (SSU) rRNA gene using a newly developed primer set. The dominant members of Archaea were Deep-sea Hydrothermal Vent Euryarchaeotic Group 6 (DHVEG 6), Marine Group I (MGI) and Deep Sea Archaeal Group (DSAG), and those in Bacteria were Alpha-, Gamma-, Delta- and Epsilonproteobacteria, Chloroflexi, Bacteroidetes, Planctomycetes and Acidobacteria. Diversity and richness were examined by 8,709 and 7,690 tag-sequences from sediments at 5 and 25 cm below the seafloor (cmbsf), respectively. The estimated diversity and richness in the methane seep sediment are as high as those in soil and deep-sea hydrothermal environments, although the tag-sequences obtained in this study were not sufficient to show whole microbial diversity in this analysis. We also compared the diversity and richness of each taxon/division between the sediments from the two depths, and found that the diversity and richness of some taxa/divisions varied significantly along with the depth.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Hadal biosphere: Insight into the microbial ecosystem in the deepest ocean on Earth

Takuro Nunoura; Yoshihiro Takaki; Miho Hirai; Shigeru Shimamura; Akiko Makabe; Osamu Koide; Tohru Kikuchi; Jun-ichi Miyazaki; Keisuke Koba; Naohiro Yoshida; Michinari Sunamura; Ken Takai

Significance Although many microbial explorations for hadal sediments began in the 1950s, the hadal water is the least-explored microbial biosphere. In this study, unexpected microbial ecosystems associated with the hadal trench water were discovered down to a 10,257-m water depth in the Challenger Deep of the Mariana Trench, which is the deepest ocean on Earth. We found the enrichment of heterotrophic population in the hadal water (6,000 ∼10,257 m) microbial communities, whereas the chemolithotrophic populations were more abundant in the upper abyssal waters. This observation suggested that the hadal microbial biosphere was supported by the endogenous recycling of organic matter in the hadal waters associated with the trench geomorphology. Hadal oceans at water depths below 6,000 m are the least-explored aquatic biosphere. The Challenger Deep, located in the western equatorial Pacific, with a water depth of ∼11 km, is the deepest ocean on Earth. Microbial communities associated with waters from the sea surface to the trench bottom (0 ∼10,257 m) in the Challenger Deep were analyzed, and unprecedented trench microbial communities were identified in the hadal waters (6,000 ∼10,257 m) that were distinct from the abyssal microbial communities. The potentially chemolithotrophic populations were less abundant in the hadal water than those in the upper abyssal waters. The emerging members of chemolithotrophic nitrifiers in the hadal water that likely adapt to the higher flux of electron donors were also different from those in the abyssal waters that adapt to the lower flux of electron donors. Species-level niche separation in most of the dominant taxa was also found between the hadal and abyssal microbial communities. Considering the geomorphology and the isolated hydrotopographical nature of the Mariana Trench, we hypothesized that the distinct hadal microbial ecosystem was driven by the endogenous recycling of organic matter in the hadal waters associated with the trench geomorphology.


The ISME Journal | 2014

Allying with armored snails: the complete genome of gammaproteobacterial endosymbiont

Satoshi Nakagawa; Shigeru Shimamura; Yoshihiro Takaki; Yohey Suzuki; Shun-ichi Murakami; Tamaki Watanabe; So Fujiyoshi; Sayaka Mino; Tomoo Sawabe; Takahiro Maeda; Hiroko Makita; Suguru Nemoto; Shin-Ichiro Nishimura; Hiromi Watanabe; Tomo-o Watsuji; Ken Takai

Deep-sea vents harbor dense populations of various animals that have their specific symbiotic bacteria. Scaly-foot gastropods, which are snails with mineralized scales covering the sides of its foot, have a gammaproteobacterial endosymbiont in their enlarged esophageal glands and diverse epibionts on the surface of their scales. In this study, we report the complete genome sequencing of gammaproteobacterial endosymbiont. The endosymbiont genome displays features consistent with ongoing genome reduction such as large proportions of pseudogenes and insertion elements. The genome encodes functions commonly found in deep-sea vent chemoautotrophs such as sulfur oxidation and carbon fixation. Stable carbon isotope (13C)-labeling experiments confirmed the endosymbiont chemoautotrophy. The genome also includes an intact hydrogenase gene cluster that potentially has been horizontally transferred from phylogenetically distant bacteria. Notable findings include the presence and transcription of genes for flagellar assembly, through which proteins are potentially exported from bacterium to the host. Symbionts of snail individuals exhibited extreme genetic homogeneity, showing only two synonymous changes in 19 different genes (13 810 positions in total) determined for 32 individual gastropods collected from a single colony at one time. The extremely low genetic individuality in endosymbionts probably reflects that the stringent symbiont selection by host prevents the random genetic drift in the small population of horizontally transmitted symbiont. This study is the first complete genome analysis of gastropod endosymbiont and offers an opportunity to study genome evolution in a recently evolved endosymbiont.


PLOS ONE | 2011

Genome Sequence of a Mesophilic Hydrogenotrophic Methanogen Methanocella paludicola, the First Cultivated Representative of the Order Methanocellales

Sanae Sakai; Yoshihiro Takaki; Shigeru Shimamura; Mitsuo Sekine; Takahisa Tajima; Hiroki Kosugi; Natsuko Ichikawa; Eiji Tasumi; Aiko T. Hiraki; Ai Shimizu; Yumiko Kato; Rika Nishiko; Koji Mori; Nobuyuki Fujita; Hiroyuki Imachi; Ken Takai

We report complete genome sequence of a mesophilic hydrogenotrophic methanogen Methanocella paludicola, the first cultured representative of the order Methanocellales once recognized as an uncultured key archaeal group for methane emission in rice fields. The genome sequence of M. paludicola consists of a single circular chromosome of 2,957,635 bp containing 3004 protein-coding sequences (CDS). Genes for most of the functions known in the methanogenic archaea were identified, e.g. a full complement of hydrogenases and methanogenesis enzymes. The mixotrophic growth of M. paludicola was clarified by the genomic characterization and re-examined by the subsequent growth experiments. Comparative genome analysis with the previously reported genome sequence of RC-IMRE50, which was metagenomically reconstructed, demonstrated that about 70% of M. paludicola CDSs were genetically related with RC-IMRE50 CDSs. These CDSs included the genes involved in hydrogenotrophic methane production, incomplete TCA cycle, assimilatory sulfate reduction and so on. However, the genetic components for the carbon and nitrogen fixation and antioxidant system were different between the two Methanocellales genomes. The difference is likely associated with the physiological variability between M. paludicola and RC-IMRE50, further suggesting the genomic and physiological diversity of the Methanocellales methanogens. Comparative genome analysis among the previously determined methanogen genomes points to the genome-wide relatedness of the Methanocellales methanogens to the orders Methanosarcinales and Methanomicrobiales methanogens in terms of the genetic repertoire. Meanwhile, the unique evolutionary history of the Methanocellales methanogens is also traced in an aspect by the comparative genome analysis among the methanogens.


Extremophiles | 1999

An improved physical and genetic map of the genome of alkaliphilic Bacillus sp. C-125

Hideto Takami; Kaoru Nakasone; Chie Hirama; Yoshihiro Takaki; Noriaki Masui; Fumie Fuji; Yuka Nakamura; Akira Inoue

Abstract Among alkaliphilic bacteria reported so far, Bacillus sp. C-125 is the strain most thoroughly characterized physiologically, biochemically, and genetically. A physical map of the chromosome of this strain was constructed to facilitate further genome analysis, and the genome size was revised from 3.7 to 4.25 Mb. Complete digestion of the chromosomal DNA with two rare cut restriction endonucleases, AscI and Sse8387I, each yielded 20 fragments ranging in size from 20 to 600 kb. Seventeen linking clones were isolated in each instance to join the adjacent AscI or Sse8387I fragments in the chromosomal map. All AscI linking clones isolated were sequenced and analyzed by comparison with the BSORF database to map the genes in the chromosome of strain C-125. Several ORFs showing significant similarities to those of B. subtilis in the AscI linking clones were positioned on the physical map. The oriC region of the C-125 chromosome was identified by southern blot analysis with a DNA probe containing the gyrB region.


PLOS ONE | 2012

Algivore or phototroph? Plakobranchus ocellatus (Gastropoda) continuously acquires kleptoplasts and nutrition from multiple algal species in nature.

Taro Maeda; Euichi Hirose; Yoshito Chikaraishi; Masaru Kawato; Kiyotaka Takishita; Takao Yoshida; Heroen Verbruggen; Jiro Tanaka; Shigeru Shimamura; Yoshihiro Takaki; Masashi Tsuchiya; Kenji Iwai; Tadashi Maruyama

The sea slug Plakobranchus ocellatus (Sacoglossa, Gastropoda) retains photosynthetically active chloroplasts from ingested algae (functional kleptoplasts) in the epithelial cells of its digestive gland for up to 10 months. While its feeding behavior has not been observed in natural habitats, two hypotheses have been proposed: 1) adult P. ocellatus uses kleptoplasts to obtain photosynthates and nutritionally behaves as a photoautotroph without replenishing the kleptoplasts; or 2) it behaves as a mixotroph (photoautotroph and herbivorous consumer) and replenishes kleptoplasts continually or periodically. To address the question of which hypothesis is more likely, we examined the source algae for kleptoplasts and temporal changes in kleptoplast composition and nutritional contribution. By characterizing the temporal diversity of P. ocellatus kleptoplasts using rbcL sequences, we found that P. ocellatus harvests kleptoplasts from at least 8 different siphonous green algal species, that kleptoplasts from more than one species are present in each individual sea slug, and that the kleptoplast composition differs temporally. These results suggest that wild P. ocellatus often feed on multiple species of siphonous algae from which they continually obtain fresh chloroplasts. By estimating the trophic position of wild and starved P. ocellatus using the stable nitrogen isotopic composition of amino acids, we showed that despite the abundance of kleptoplasts, their photosynthates do not contribute greatly to the nutrition of wild P. ocellatus, but that kleptoplast photosynthates form a significant source of nutrition for starved sea slugs. The herbivorous nature of wild P. ocellatus is consistent with insights from molecular analyses indicating that kleptoplasts are frequently replenished from ingested algae, leading to the conclusion that natural populations of P. ocellatus do not rely on photosynthesis but mainly on the digestion of ingested algae.

Collaboration


Dive into the Yoshihiro Takaki's collaboration.

Top Co-Authors

Avatar

Ken Takai

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Takuro Nunoura

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Shigeru Shimamura

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hideto Takami

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Shinro Nishi

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Takao Yoshida

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Miho Hirai

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Tadashi Maruyama

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Koki Horikoshi

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hiroko Makita

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge