Yoshihiro Tomikawa
National Institute of Polar Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yoshihiro Tomikawa.
Tellus B | 2005
Takashi Yamanouchi; R. Treffeisen; Andreas Herber; Masataka Shiobara; Sadamu Yamagata; Keiichiro Hara; Kaoru Sato; Masanori Yabuki; Yoshihiro Tomikawa; A. Rinke; Roland Neuber; R. Schumachter; Michael Kriews; Johan Ström; Otto Schrems; Hartwig Gernandt
The ASTAR 2000 (Arctic Study of Tropospheric Aerosol and Radiation) campaign ran from 12 March until 25 April 2000 with extensive flight operations in the vicinity of Svalbard (Norway) from Longyearbyen airport (78.25°N, 15.49°E). It was a joint Japanese (NIPR Tokyo)–German (AWI Bremerhaven/Potsdam) airborne measurement campaign using AWI aircraft POLAR 4 (Dornier 228-101). Simultaneous ground-based measurements were done at the international research site Ny-Ålesund (78.95°N, 11.93°E) in Svalbard, at the German Koldewey station, at the Japanese Rabben station and at the Scandinavian station at Zeppelin Mountain (475 m above sea level). During the campaign 19 profiles of various aerosol properties were measured. In general, the Arctic spring aerosol in the vicinity of Svalbard had significant temporal and vertical variability. A strong haze event occurred between 21 and 25 March in which the optical depth from ground-based observation was 0.18, which was significantly greater than the background value of 0.06. Airborne measurements on 23 March during this haze event showed a high aerosol layer with an extinction coefficient of 0.03 km−1 or more up to 3 km and a scattering coefficient from 0.02 in the same altitude range. From the chemical analyses of airborne measurements, sulfate, soot and sea salt particles were dominant, and there was a high mixing ratio of external soot particles in some layers during the haze event, whereas internal mixing of soot in sulfate was noticeable in some layers for the background condition. We argue that the high aerosol loading is due to direct transport from anthropogenic source regions. In this paper we focus on the course of the haze event in detail through analyses of the airborne and ground-based results.
Geophysical Research Letters | 2016
Tetsu Nakamura; Koji Yamazaki; Katsushi Iwamoto; Meiji Honda; Yoshizumi Miyoshi; Yasunobu Ogawa; Yoshihiro Tomikawa; Jinro Ukita
Recent evidence from both observations and model simulations suggests that an Arctic sea ice reduction tends to cause a negative Arctic Oscillation (AO) phase with severe winter weather in the Northern Hemisphere, which is often preceded by weakening of the stratospheric polar vortex. Although this evidence hints at a stratospheric involvement in the Arctic-midlatitude climate linkage, the exact role of the stratosphere remains elusive. Here we show that tropospheric AO response to the Arctic sea ice reduction largely disappears when suppressing the stratospheric wave mean flow interactions in numerical experiments. The results confirm a crucial role of the stratosphere in the sea ice impacts on the midlatitudes by coupling between the stratospheric polar vortex and planetary-scale waves. Those results and consistency with observation-based evidence suggest that a recent Arctic sea ice loss is linked to midlatitudes extreme weather events associated with the negative AO phase.
Journal of the Atmospheric Sciences | 2010
Kazuyuki Miyazaki; Shingo Watanabe; Yoshio Kawatani; Kaoru Sato; Yoshihiro Tomikawa; Masaaki Takahashi
Abstract The relative roles of atmospheric motions on various scales, from mesoscale to planetary scale, in transport and mixing in the extratropical tropopause region are investigated using a high-vertical-resolution general circulation model (GCM). The GCM with a vertical resolution of about 300 m explicitly represents the propagation and breaking of gravity waves and the induced transport and mixing. A downward control calculation shows that the Eliassen–Palm (E-P) flux of the gravity waves diverges and induces a mean equatorward flow in the extratropical tropopause region, which differs from the mean poleward flow induced by the convergence of large-scale E-P fluxes. The diffusion coefficients estimated from the eddy potential vorticity flux in tropopause-based coordinates reveal that isentropic motions diffuse air between 20 K below and 10 K above the tropopause from late autumn to early spring, while vertical mixing is strongly suppressed at around 10–15 K above the tropopause throughout the year. T...
Journal of the Atmospheric Sciences | 2009
Kaoru Sato; Yoshihiro Tomikawa; G. Hashida; Takashi Yamanouchi; Hideaki Nakajima; T. Sugita
The horizontal structure of processes causing increases in ozone in the Antarctic polar vortex was examined using data measured in 2003 from an ozonesonde observation campaign at Syowa Station (39.68E, 69.08S) and from the Improved Limb Atmospheric Spectrometer II (ILAS-II) onboard the Advanced Earth Observing Satellite II. The ILAS-II data are daily and distributed uniformly at 14 points in the zonal direction, mostly at polar latitudes. The Antarctic ozone hole that developed in 2003 was one of the largest recorded. The period of focus in this study is 26 September through 24 October, when a strong polar vortex was situated in the stratosphere. An ozone mixing ratio contour (1.0 ppmv) moved downward near a height of 20 km during the period of focus. This increase in ozone is likely to result from downward transport of ozone-rich air originating from lower latitudes by Brewer‐Dobson circulation. First, the descent rate of the mixing ratio contour was estimated by taking the geometric height as the vertical coordinate for the deep vortex interior around 20 km. A significant longitudinal dependence was observed. An analysis using ECMWF operational data shows that this dependence can be approximately explained by longitudinally dependent vertical movements of the isentropes caused by a zonal wavenumber-1 quasi-stationary planetary wave with amplitude and phases varying on a seasonal time scale. Next, the descent rate was calculated around 500 K (around 20 km) by taking the potential temperature (isentrope) as the vertical coordinate. The longitudinal dependence was still present using this coordinate, meaning that the ozone mixing ratio and its increase are not constant on the isentropic layer even in the interior of the polar vortex. A backward trajectory analysis showed that air parcels with large ozone mixing ratios were mostly transported from the polar vortex boundary region. This result suggests that lateral transport/mixing is important even before the breakup of the polar vortex. Results from a tracer‐tracer correlation analysis of O3 and long-lived constituent N2O were also consistent with this inference. The contribution of lateral mixing to the increase in ozone was estimated at about 17% 6 4% that of the Brewer‐Dobson circulation around 20 km, using the calculated descent rates. The results of this study also imply that Lagrangian downward motions in the vortex interior are not correctly estimated without accounting for lateral mixing, even if the polar vortex is dynamically stable.
Journal of the Atmospheric Sciences | 2015
Ryosuke Shibuya; Kaoru Sato; Yoshihiro Tomikawa; Masaki Tsutsumi; Toru Sato
AbstractMultiple tropopauses (MTs) defined by the World Meteorological Organization are frequently detected from autumn to spring at Syowa Station (69.0°S, 39.6°E). The dynamical mechanism of MT events was examined by observations of the first mesosphere–stratosphere–troposphere (MST) radar in the Antarctic, the Program of the Antarctic Syowa MST/Incoherent Scatter (IS) Radar (PANSY), and of radiosondes on 8–11 April 2013.The MT structure above the first tropopause is composed of strong temperature fluctuations. By a detailed analysis of observed three-dimensional wind and temperature fluctuation components, it is shown that the phase and amplitude relations between these components are consistent with the theoretical characteristics of linear inertia–gravity waves (IGWs).Numerical simulations were performed by using a nonhydrostatic model. The simulated MT structures and IGW parameters agree well with the observation. In the analysis using the numerical simulation data, it is seen that IGWs were generate...
Journal of Climate | 2010
Yoshihiro Tomikawa
Abstract This study examines why the persistence of easterly wind during major stratospheric sudden warmings (SSWs) varies from one SSW to another. From the 22 SSWs identified between 1979 and 2009, six long and six short SSWs of easterly wind periods longer than 20 days and shorter than 10 days, respectively, are chosen and their composites are compared. While the polar-night jet is stronger than the climatological jet before long SSWs, the preconditioning of the polar-night jet tends to occur before short SSWs. After the occurrence of SSWs, the easterly wind of short SSWs quickly returns to a westerly wind due to large positive Eliassen–Palm (E–P) flux divergence in the winter polar stratosphere. The easterly wind of long SSWs lasts for 20–40 days because the E–P flux divergence is small whether it is positive or negative. Such a difference in the E–P flux divergence originates from the difference in the upward E–P flux from the troposphere. On the other hand, the positive E–P flux divergence during sho...
Journal of the Atmospheric Sciences | 2006
Yoshihiro Tomikawa; Kaoru Sato; Theodore G. Shepherd
The spatial structure and phase velocity of tropopause disturbances localized around the subpolar jet in the Southern Hemisphere are investigated using 6-hourly European Centre for Medium-Range Weather Forecasts reanalysis data covering 15 yr (1979–93). The phase velocity and phase structure of the tropopause disturbances are in good agreement with those of an edge wave vertically trapped at the tropopause. However, the vertical distribution of the ratio of potential to kinetic energy exhibits maxima above and below the tropopause and a minimum around the tropopause, in contradiction to edge wave theory for which the ratio is unity throughout the troposphere and stratosphere. This difference in vertical structure between the observed tropopause disturbances and edge wave theory is attributed to the effects of a finite-depth tropopause together with the next-order corrections in Rossby number to quasigeostrophic dynamics.
Geophysical Research Letters | 2015
Takanori Nishiyama; Kaoru Sato; Takuji Nakamura; Masaki Tsutsumi; Toru Sato; Masashi Kohma; Koji Nishimura; Yoshihiro Tomikawa; Mitsumu K. Ejiri; T. Tsuda
We report height and time variations in polar mesosphere winter echoes (PMWE) based on the Program of the Antarctic Syowa mesosphere-stratosphere-troposphere/incoherent scatter (PANSY) radar observations. PMWE were identified for 110 days from March to September 2013. PMWE occurrence frequency increased abruptly in May when two solar proton events occurred. PMWE were also observed even during periods without any solar proton events, suggesting that a possible cause of the PMWE is ionization by energetic electron precipitations. The monthly mean PMWE characteristics showed that occurrence of PMWE were mainly restricted to sunlit time. This fact indicates that electrons detached from negatively charged particles play an important role. While PMWE below 72 km in altitude completely disappeared before sunset, it was detected above that altitude for a few hours even after sunset. This height dependence in the altitude range of 60–80 km can be explained qualitatively by empirical effective recombination rates.
Monthly Weather Review | 2015
Yoshihiro Tomikawa; Masahiro Nomoto; Hiroaki Miura; Masaki Tsutsumi; Koji Nishimura; Takuji Nakamura; Hisao Yamagishi; Takashi Yamanouchi; Toru Sato; Kaoru Sato
AbstractCharacteristically strong vertical wind disturbances (VWDs) with magnitudes larger than 1 m s−1 were observed in the Antarctic troposphere using a new mesosphere–stratosphere–troposphere (MST) radar called the Program of the Antarctic Syowa MST/incoherent scatter (IS) Radar (PANSY) during 15–19 June 2012 at Syowa Station (69.0°S, 39.6°E). In the same period, two synoptic-scale cyclones approached Syowa Station and caused a strong wind event (SWE) at the surface. The VWDs observed during the SWE at Syowa Station had a nearly standing (i.e., no phase tilt with height) phase structure up to the tropopause and a power spectrum proportional to the − power of frequency. On the other hand, the observed VWDs were not associated with systematic horizontal momentum fluxes. Meteorological fields around Syowa Station during the SWE were successfully simulated using the Nonhydrostatic Icosahedral Atmospheric Model (NICAM). A strong VWD was also simulated at the model grid of 70.0°S, 40.0°E in NICAM, which had ...
International Journal of Remote Sensing | 2009
Isao Murata; Kaoru Sato; Shoichi Okano; Yoshihiro Tomikawa
We have developed a balloon-borne optical ozone sensor and since 1994 have observed the vertical distribution of upper stratospheric ozone in summer using a thin-film high-altitude balloon at Sanriku, Japan. The sensor measures solar ultraviolet radiation in ozone Hartley band absorption at wavelength of 300 nm, and vertical ozone distributions higher than 15 km were obtained with 1 km resolution. The temporal variations of ozone concentrations above 30 km from 1994 to 2007 show correlations with 11-year variation of solar F10.7 flux and we could not detect decreasing or increasing trends.