Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoshihisa Sugimura is active.

Publication


Featured researches published by Yoshihisa Sugimura.


Journal of Bone and Mineral Research | 2010

Hyponatremia-induced osteoporosis

Joseph G. Verbalis; Julianna Barsony; Yoshihisa Sugimura; Ying Tian; Douglas J. Adams; Elizabeth A. Carter; Helaine E. Resnick

There is a high prevalence of chronic hyponatremia in the elderly, frequently owing to the syndrome of inappropriate antidiuretic hormone secretion (SIADH). Recent reports have shown that even mild hyponatremia is associated with impaired gait stability and increased falls. An increased risk of falls among elderly hyponatremic patients represents a risk factor for fractures, which would be further amplified if hyponatremia also contributed metabolically to bone loss. To evaluate this possibility, we studied a rat model of SIADH and analyzed data from the Third National Health and Nutrition Examination Survey (NHANES III). In rats, dual‐energy X‐ray absorptiometry (DXA) analysis of excised femurs established that hyponatremia for 3 months significantly reduced bone mineral density by approximately 30% compared with normonatremic control rats. Moreover, micro‐computed tomography (µCT) and histomorphometric analyses indicated that hyponatremia markedly reduced both trabecular and cortical bone via increased bone resorption and decreased bone formation. Analysis of data from adults in NHANES III by linear regression models showed that mild hyponatremia is associated with increased odds of osteoporosis (T‐score –2.5 or less) at the hip [odds ratio (OR) = 2.85; 95% confidence interval (CI) 1.03–7.86; p < .01]; all models were adjusted for age, sex, race, body mass index (BMI), physical activity, history of diuretic use, history of smoking, and serum 25‐hydroxyvitamin D [25(OH)D] levels. Our results represent the first demonstration that chronic hyponatremia causes a substantial reduction of bone mass. Cross‐sectional human data showing that hyponatremia is associated with significantly increased odds of osteoporosis are consistent with the experimental data in rodents. Our combined results suggest that bone quality should be assessed in all patients with chronic hyponatremia.


Journal of Biological Chemistry | 2011

Osteoclast Response to Low Extracellular Sodium and the Mechanism of Hyponatremia-induced Bone Loss

Julia Barsony; Yoshihisa Sugimura; Joseph G. Verbalis

Our recent animal and human studies revealed that chronic hyponatremia is a previously unrecognized cause of osteoporosis that is associated with increased osteoclast numbers in a rat model of the human disease of the syndrome of inappropriate antidiuretic hormone secretion (SIADH). We used cellular and molecular approaches to demonstrate that sustained low extracellular sodium ion concentrations ([Na+]) directly stimulate osteoclastogenesis and resorptive activity and to explore the mechanisms underlying this effect. Assays on murine preosteoclastic RAW 264.7 cells and on primary bone marrow monocytes both indicated that lowering the medium [Na+] dose-dependently increased osteoclast formation and resorptive activity. Low [Na+], rather than low osmolality, triggered these effects. Chronic reduction of [Na+] dose-dependently decreased intracellular calcium without depleting endoplasmic reticulum calcium stores. Moreover, we found that reduction of [Na+] dose-dependently decreased cellular uptake of radiolabeled ascorbic acid, and reduction of ascorbic acid in the culture medium mimicked the osteoclastogenic effect of low [Na+]. We also detected downstream effects of reduced ascorbic acid uptake, namely evidence of hyponatremia-induced oxidative stress. This was manifested by increased intracellular free oxygen radical accumulation and proportional changes in protein expression and phosphorylation, as indicated by Western blot analysis from cellular extracts and by increased serum 8-hydroxy-2′-deoxyguanosine levels in vivo in rats. Our results therefore reveal novel sodium signaling mechanisms in osteoclasts that may serve to mobilize sodium from bone stores during prolonged hyponatremia, thereby leading to a resorptive osteoporosis in patients with SIADH.


FEBS Letters | 2012

Inflammatory changes in adipose tissue enhance expression of GPR84, a medium‐chain fatty acid receptor

Hiroshi Nagasaki; Takaaki Kondo; Masahiro Fuchigami; Hiroyuki Hashimoto; Yoshihisa Sugimura; Nobuaki Ozaki; Hiroshi Arima; Akira Ota; Yutaka Oiso; Yoji Hamada

In this study we aimed to identify the physiological roles of G protein‐coupled receptor 84 (GPR84) in adipose tissue, together with medium‐chain fatty acids (MCFAs), the specific ligands for GPR84. In mice, high‐fat diet up‐regulated GPR84 expression in fat pads. In 3T3‐L1 adipocytes, co‐culture with a macrophage cell line, RAW264, or TNFα remarkably enhanced GPR84 expression. In the presence of TNFα, MCFAs down‐regulated adiponectin mRNA expression in 3T3‐L1 adipocytes. Taken together, our results suggest that GPR84 emerges in adipocytes in response to TNFα from infiltrating macrophages and exacerbates the vicious cycle between adiposity and diabesity.


Glia | 2011

Time-dependent changes in proinflammatory and neurotrophic responses of microglia and astrocytes in a rat model of osmotic demyelination syndrome.

Shintaro Iwama; Yoshihisa Sugimura; Haruyuki Suzuki; Hiromi Suzuki; Takashi Murase; Nobuaki Ozaki; Hiroshi Nagasaki; Hiroshi Arima; Yoshiharu Murata; Makoto Sawada; Yutaka Oiso

Osmotic demyelination syndrome (ODS) is a serious demyelinating disease in the central nervous system usually caused by rapid correction of hyponatremia. In an animal model of ODS, we previously reported microglial accumulation expressing proinflammatory cytokines. Microglia and astrocytes secreting proinflammatory cytokines and neurotrophic factors are reported to be involved in the pathogenesis of demyelinative diseases. Therefore, to clarify the role of microglial and astrocytic function in ODS, we examined the time‐dependent changes in distribution, morphology, proliferation, and mRNA/protein expression of proinflammatory cytokines, neurotrophic factors, and matrix metalloproteinase (MMP) in microglia and astrocytes 2 days (early phase) and 5 days (late phase) after the rapid correction of hyponatremia in ODS rats. The number of microglia time dependently increased at demyelinative lesion sites, proliferated, and expressed tumor necrosis factor (TNF)‐α, interleukin (IL)‐1β, IL‐6, inducible nitric oxide synthase, and MMP2, 9, and 12 at the early phase. Microglia also expressed leukemia inhibitory factor (a neurotrophic factor) and phagocytosed myelin debris at the late phase. The number of astrocytes time dependently increased around demyelinative lesions, extended processes to lesions, proliferated, and expressed nerve growth factor and glial cell line‐derived neurotrophic factor at the late phase. Moreover, treatment with infliximab, a monoclonal antibody against TNF‐α, significantly attenuated neurological impairments. Our results suggest that the role of microglia in ODS is time dependently shifted from detrimental to protective and that astrocytes play a protective role at the late phase. Modulation of excessive proinflammatory responses in microglia during the early phase after rapid correction may represent a therapeutic target for ODS.


Journal of The American Society of Nephrology | 2010

Minocycline Prevents Osmotic Demyelination Syndrome by Inhibiting the Activation of Microglia

Haruyuki Suzuki; Yoshihisa Sugimura; Shintaro Iwama; Hiromi Suzuki; Ozaki Nobuaki; Hiroshi Nagasaki; Hiroshi Arima; Makoto Sawada; Yutaka Oiso

Rapid correction of chronic hyponatremia can lead to osmotic demyelination syndrome (ODS), a severe demyelination disease. The microglia that accumulate in the demyelinative lesions may play a detrimental role in the pathogenesis of ODS by producing proinflammatory cytokines, suggesting that they may be a target for therapeutic intervention. Here, we investigated whether minocycline, a selective and potent inhibitor of microglial activation, could protect against ODS in rats. We induced hyponatremia by liquid diet feeding and dDAVP infusion. Rapid correction of the hyponatremia 7 days later resulted in neurologic impairment with severe demyelinative lesions. Activated microglia accumulated at the site of demyelination. Treatment with minocycline within 24 hours of rapid correction, however, was protective: rats exhibited minimal neurologic impairment, and survival improved. Histologic analysis showed that minocycline inhibited demyelination and suppressed the accumulation of microglia at the site of demyelination. Real-time RT-PCR and immunohistochemical analyses showed that minocycline inhibited the activity of microglia and the expression of inflammatory cytokines (e.g. IL-1β, inducible nitric-oxide synthase, and TNF-α), monocyte chemoattractant protein-1, and matrix metalloproteinase-12 in microglia. These results demonstrate that minocycline can protect against ODS by inhibiting the activation and accumulation of microglia at the site of demyelinative lesions, suggesting its possible use in clinical practice.


Experimental Neurology | 2007

Role of microglia in the pathogenesis of osmotic-induced demyelination.

Seiko Takefuji; Takashi Murase; Yoshihisa Sugimura; Yoshiko Takagishi; Shizu Hayasaka; Yutaka Oiso; Yoshiharu Murata

Osmotic demyelination is a serious disease caused by rapid correction of hyponatremia. In humans, demyelinative lesions occur preferentially in the central pons, and thus are termed central pontine myelinolysis. Although accumulation of microglia has been reported in such demyelinative lesions, their role in the pathogenesis of osmotic demyelination remains unclear. We examined the expression of cytokines in microglia that accumulated in the demyelinative lesions in a rat model of osmotic demyelination. Hyponatremia was induced in rats by a combination of dDAVP infusion and liquid diet feeding. After 7 days, serum sodium levels were rapidly corrected by hypertonic saline injection. The rats developed severe motor deficits, and marked demyelinative lesions were found in the midbrain and cerebral cortex. In the area of the demyelinative lesions, massive accumulations of microglia were observed that expressed the proinflammatory cytokines TNF-alpha and IFN-gamma as well as iNOS. In contrast, in hyponatremia corrected rats treated with lovastatin, which is known to inhibit microglial infiltration in various animal models of CNS disease, neurological impairments and the degree of demyelination were significantly ameliorated. Lovastatin also reduced the accumulation of microglia and decreased the expression of TNF-alpha in the demyelinative lesions. These results indicate that microglia play a detrimental role in the pathogenesis of osmotic demyelination by producing proinflammatory cytokines, and further suggest that lovastatin may be useful in repressing the demyelination.


Journal of Neuroendocrinology | 2007

Differential Kinetics of Oxytocin and Vasopressin Heteronuclear RNA Expression in the Rat Supraoptic Nucleus in Response to Chronic Salt Loading In vivo

Chunmei Yue; Noriko Mutsuga; Yoshihisa Sugimura; Joseph G. Verbalis; Harold Gainer

Previous studies have shown that the secretion of oxytocin and vasopressin from the posterior pituitary always accompanies systemic hyperosmotic stimuli in rats, and that oxytocin and vasopressin mRNAs consistently increase in response to prolonged hyperosmotic stimuli. Hence, it has been widely interpreted that oxytocin and vasopressin secretion and gene expression are closely coupled. In the present study, we used both vasopressin and oxytocin intron‐ specific probes to measure vasopressin and oxytocin heteronuclear RNA (hnRNA) levels, respectively, by in situ hybridisation in the rat supraoptic nucleus (SON) in conjunction with radioimmunoassays of vasopressin and oxytocin peptide levels in plasma and in the posterior pituitary in normally hydrated rats and after 1–5 days of salt loading. Increased oxytocin secretion in response to hyperosmotic stimuli exceeded vasopressin secretion at every time point studied. Vasopressin hnRNA in the SON increased to near maximal levels within minutes after the hyperosmotic stimulus, and was maintained throughout all 5 days of salt loading. By contrast, oxytocin hnRNA did not significantly change from control levels until approximately 2 days after hyperosmotic stimulation, and was not maximal until 3 days. In summary, increases in oxytocin gene transcription in response to osmotic stimuli are dramatically delayed compared to increases in vasopressin gene transcription under the same conditions. These data indicate that oxytocin gene transcription is not as closely correlated with pituitary peptide secretion as is vasopressin gene transcription, and suggests that there is a fundamental difference in excitation–secretion–transcription coupling mechanisms that regulate these two closely related genes in the rat magnocellular neurones in the SON.


The Journal of Neuroscience | 2013

GABA Type B Receptor Signaling in Proopiomelanocortin Neurons Protects Against Obesity, Insulin Resistance, and Hypothalamic Inflammation in Male Mice on a High-Fat Diet

Yoshihiro Ito; Ryoichi Banno; Miyuki Shibata; Koichi Adachi; Shigeru Hagimoto; Daisuke Hagiwara; Yoshiharu Ozawa; Motomitsu Goto; Hidetaka Suga; Yoshihisa Sugimura; Bernhard Bettler; Yutaka Oiso; Hiroshi Arima

There is evidence suggesting that the GABA system in the arcuate nucleus, where orexigenic neuropeptide Y and agouti-related peptide as well as anorexigenic proopiomelanocortin (POMC) are expressed, plays an important role in energy balance. In this study, we generated POMC-specific GABAB receptor-deficient [knock-out (KO)] mice. Male KO mice on a high-fat diet (HFD) showed mild increases in body weight (BW) at the age of 9 weeks compared to wild-type (WT) mice, and the differences remained significant until 16 weeks old. However, there was no difference in BW in females between genotypes. While food intake was similar between genotypes, oxygen consumption was significantly decreased in the male KO mice. The insulin tolerance test revealed that the male KO mice were less insulin sensitive compared to WT mice at the age of 8 weeks, when there was no significant difference in BW between genotypes. Despite increased BW, POMC mRNA expression in the arcuate nucleus was significantly decreased in the KO mice compared to WT mice at the age of 16 weeks. Furthermore, the expression of TNFα as well as IL-6, proinflammatory markers in the hypothalamus, was significantly increased in the KO mice on a HFD compared to WT mice. This demonstrates that the deletion of GABAB receptors in POMC neurons in the male mice on a HFD results in obesity, insulin resistance, and hypothalamic inflammation. Furthermore, the decreased POMC expression in the obese KO mice suggests that the regulation of POMC expression through GABAB receptors is essential for proper energy balance.


Experimental and Clinical Endocrinology & Diabetes | 2012

Reduction of insulin signaling upregulates angiopoietin-like protein 4 through elevated free fatty acids in diabetic mice.

N. Mizutani; Nobuaki Ozaki; Yusuke Seino; Ayako Fukami; E. Sakamoto; T. Fukuyama; Yoshihisa Sugimura; Hiroshi Nagasaki; Hiroshi Arima; Yutaka Oiso

BACKGROUND Angiopoietin-like protein 4 (Angptl4) is thought to cause an increase in serum triglyceride levels. In the present study, we elucidated Angptl4 expression in the mouse models of type 1 and type 2 diabetes mellitus, and investigated the possible mechanisms involved. METHODS Type 1 diabetes was induced in C57BL/6 J mice by treating them with streptozotocin (STZ). Type 2 diabetes was induced by feeding the mice a high-fat diet (HFD) for 18 weeks. RESULTS The levels of Angptl4 mRNA expression in liver, white adipose tissue (WAT), and brown adipose tissue (BAT) were found to increase in the STZ diabetic mice relative to control mice. This effect was attenuated by insulin administration. In the HFD diabetic mice, the Angptl4 mRNA expression levels were increased in liver, WAT, and BAT. Treatment with metformin for 4 weeks attenuated the increased levels of Angptl4 mRNA. Fatty acids (FAs) such as palmitate and linoleate induced Angptl4 mRNA expression in H4IIE hepatoma cells and 3T3-L1 adipocytes. Treatment with insulin but not metformin attenuated FA-induced Angptl4 mRNA expression in H4IIE. Both insulin and metformin did not influence the effect of FAs in 3T3-L1 cells. CONCLUSION These observations demonstrated that Angptl4 mRNA expression was increased through the elevated free FAs in diabetic mice.


Peptides | 2010

Glucocorticoids increase NPY gene expression in the arcuate nucleus by inhibiting mTOR signaling in rat hypothalamic organotypic cultures.

Hiroshi Shimizu; Hiroshi Arima; Yoshiharu Ozawa; Minemori Watanabe; Ryoichi Banno; Yoshihisa Sugimura; Nobuaki Ozaki; Hiroshi Nagasaki; Yutaka Oiso

The mammalian target of rapamycin (mTOR) has been implicated in the regulation of physiological functions such as cell growth and proliferation, and glucocorticoids reportedly inhibit mTOR signaling in peripheral tissues. Recent studies suggest that the mTOR signaling in the hypothalamus plays a critical role in maintaining energy homeostasis. In this study, we examined whether the mTOR signaling in the hypothalamus is involved in the regulation of neuropeptide Y (Npy) gene expression in the arcuate nucleus by glucocorticoids. In the hypothalamic organotypic cultures, the incubation with rapamycin significantly inhibited the mTOR signaling which was shown by decreases in the levels of phosphorylated p70S6K1 and S6. Similar to the action of the mTOR inhibitor rapamycin, dexamethasone (DEX), a synthetic glucocorticoid, also inhibited the mTOR signaling in the hypothalamic explants. Analyses of the explants with in situ hybridization demonstrated that the DEX or rapamycin alone significantly increased Npy gene expression in the arcuate nucleus, but that there were no additive effects of DEX and rapamycin on the expression. These data suggest that glucocorticoids upregulate the Npy gene expression in the arcuate nucleus by inhibiting mTOR signaling, at least in part.

Collaboration


Dive into the Yoshihisa Sugimura's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge