Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoshihito Ishihara is active.

Publication


Featured researches published by Yoshihito Ishihara.


Differentiation | 2010

Isolation of multipotent stem cells in human periodontal ligament using stage-specific embryonic antigen-4

Noriaki Kawanabe; Satoko Murata; Kaoru Murakami; Yoshihito Ishihara; Satoru Hayano; Hiroshi Kurosaka; Hiroshi Kamioka; Teruko Takano-Yamamoto; Takashi Yamashiro

The periodontal ligament (PDL) comprises adult stem cells, which are responsible for periodontal tissue regeneration. In the present study, we investigated the specific profile of the stem cells in the human PDL. Microscopic analysis demonstrated that PDL cells showed a fibroblastic appearance, forming flat and loose aggregates. PDL cells expressed embryonic stem cell-associated antigens (SSEA-1, SSEA-3, SSEA-4, TRA-1-60, TRA-1-81, OCT4, NANOG, SOX2, and REX1, and alkaline phosphatase activity), as well as conventional mesenchymal stem cell markers. When PDL cells were cultured in the presence of all-trans-retinoic acid, the numbers of SSEA-3+ and SSEA-4+ PDL cells were significantly decreased, while that of SSEA-1+ was increased. SSEA-4+ PDL cells showed a greater telomere length and growth rate. SSEA-4+ PDL cells exhibited the potential to generate specialized cells derived from three embryonic germ layers: mesodermal (adipocytes, osteoblasts, and chondrocytes), ectodermal (neurons), and endodermal (hepatocytes) lineages. Our findings demonstrated that SSEA-4, a major antigen to distinguish human embryonic stem cells, could also be used to identify multipotent stem cells in the PDL. Hence, SSEA-4+ human PDL cells appear to be a promising source of stem cells for regenerative medicine.


Journal of Bone and Mineral Research | 2006

Fluid Shear Stress Induces Less Calcium Response in a Single Primary Osteocyte Than in a Single Osteoblast: Implication of Different Focal Adhesion Formation†

Hiroshi Kamioka; Yasuyo Sugawara; Sakhr A. Murshid; Yoshihito Ishihara; Tadashi Honjo; Teruko Takano-Yamamoto

The immediate calcium response to fluid shear stress was compared between osteocytes and osteoblasts on glass using real‐time calcium imaging. The osteoblasts were responsive to fluid shear stress of up to 2.4 Pa, whereas the osteocytes were not. The difference in flow‐induced calcium may be related to differences in focal adhesion formation.


Neuroscience | 2009

BOTULINUM TOXIN TYPE A (150 kDa) DECREASES EXAGGERATED NEUROTRANSMITTER RELEASE FROM TRIGEMINAL GANGLION NEURONS AND RELIEVES NEUROPATHY BEHAVIORS INDUCED BY INFRAORBITAL NERVE CONSTRICTION

Yoshihisa Kitamura; Yoshizo Matsuka; Igor Spigelman; Yoshihito Ishihara; Yumiko Yamamoto; Wataru Sonoyama; Takuo Kuboki; Keiji Oguma

Many patients with trigeminal neuropathies suffer severe chronic pain which is inadequately alleviated with centrally-acting drugs. These drugs also possess severe side effects making compliance difficult. One strategy is to develop new treatments without central side effects by targeting peripheral sensory neurons, since sensory neuron excitability and neurotransmitter release increase in chronic pain states. Such treatments may include the highly purified botulinum toxin type A 150 kDa (BoNT/A) which reportedly blocks vesicular neurotransmitter release. We set out to determine if experimental trigeminal neuropathy induced by infraorbital nerve constriction (IoNC) in rats could alter neurotransmitter release from somata of trigeminal sensory neurons and if it could be attenuated by BoNT/A. Thus, we monitored the secretory activity of acutely dissociated trigeminal ganglion (TRG) neurons from naïve and IoNC rats by measuring the fluorescence intensity of the membrane-uptake marker (N-(3-triethylammoniumpropyl)-4-(6-(4-(diethylamino)phenyl)hexatrienyl)pyridinium dibromide (FM4-64). FM4-64 staining showed that neurons possess a pool of recycled vesicles which could be released by high KCl (75 mM) application. BoNT/A pre-treatment of acutely dissociated TRG neurons from naïve rats significantly reduced the rate of FM4-64 dye release. Neurons isolated from TRG ipsilateral to IoNC exhibited significantly faster onset of FM4-64 release than neurons contralateral to IoNC (sham surgery). IoNC also produced long-lasting ipsilateral tactile allodynia, measured as large decreases of withdrawal thresholds to mechanical stimulation. Intradermal injection of BoNT/A in the area of infraorbital branch of the trigeminal nerve (IoN) innervation alleviated IoNC-induced mechanical allodynia and reduced the exaggerated FM4-64 release in TRG neurons from these rats. Our results suggest that BoNT/A decreases neuropathic pain behaviors by decreasing the exaggerated neurotransmitter release from TRG sensory neurons.


Journal of Bone and Mineral Research | 2007

Hormonal, pH, and Calcium Regulation of Connexin 43–Mediated Dye Transfer in Osteocytes in Chick Calvaria

Yoshihito Ishihara; Hiroshi Kamioka; Tadashi Honjo; Hirotaka Ueda; Teruko Takano-Yamamoto; Takashi Yamashiro

Gap junctional intercellular communication among osteocytes in chick calvaria, their natural 3D environment, was examined using FRAP analysis. Cell–cell communication among osteocytes in chick calvaria was mediated by Cx43 and was regulated by extracellular pH, extracellular calcium ion concentration, and PTH.


Microscopy and Microanalysis | 2007

Primary cultures of chick osteocytes retain functional gap junctions between osteocytes and between osteocytes and osteoblasts

Hiroshi Kamioka; Yoshihito Ishihara; Hans Ris; Sakhr A. Murshid; Yasuyo Sugawara; Teruko Takano-Yamamoto; Soo Siang Lim

The inaccessibility of osteocytes due to their embedment in the calcified bone matrix in vivo has precluded direct demonstration that osteocytes use gap junctions as a means of intercellular communication. In this article, we report successfully isolating primary cultures of osteocytes from chick calvaria, and, using anti-connexin 43 immunocytochemistry, demonstrate gap junction distribution to be comparable to that found in vivo. Next, we demonstrate the functionality of the gap junctions by (1) dye coupling studies that showed the spread of microinjected Lucifer Yellow from osteoblast to osteocyte and between adjacent osteocytes and (2) analysis of fluorescence replacement after photobleaching (FRAP), in which photobleaching of cells loaded with a membrane-permeable dye resulted in rapid recovery of fluorescence into the photobleached osteocyte, within 5 min postbleaching. This FRAP effect did not occur when cells were treated with a gap junction blocker (18alpha-glycyrrhetinic acid), but replacement of fluorescence into the photobleached cell resumed when it was removed. These studies demonstrate that gap junctions are responsible for intercellular communication between adjacent osteocytes and between osteoblasts and osteocytes. This role is consistent with the ability of osteocytes to respond to and transmit signals over long distances while embedded in a calcified matrix.


Bone | 2008

The alteration of a mechanical property of bone cells during the process of changing from osteoblasts to osteocytes

Yasuyo Sugawara; Ryoko Ando; Hiroshi Kamioka; Yoshihito Ishihara; Sakhr A. Murshid; Ken Hashimoto; Noriyuki Kataoka; Katsuhiko Tsujioka; Fumihiko Kajiya; Takashi Yamashiro; Teruko Takano-Yamamoto

Osteocytes acquire their stellate shape during the process of changing from osteoblasts in bone. Throughout this process, dynamic cytoskeletal changes occur. In general, changes of the cytoskeleton affect cellular mechanical properties. Mechanical properties of living cells are connected with their biological functions and physiological processes. In this study, we for the first time analyzed elastic modulus, a mechanical property of bone cells. Bone cells in embryonic chick calvariae and in isolated culture were identified using fluorescently labeled phalloidin and OB7.3, a chick osteocyte-specific monoclonal antibody, and then observed by confocal laser scanning microscopy. The elastic modulus of living cells was analyzed with atomic force microscopy. To examine the consequences of focal adhesion formation on the elastic modulus, cells were pretreated with GRGDS and GRGES, and then the elastic modulus of the cells was analyzed. Focal adhesions in the cells were visualized by immunofluorescence of vinculin. From fluorescence images, we could distinguish osteoblasts, osteoid osteocytes and mature osteocytes both in vivo and in vitro. The elastic modulus of peripheral regions of cells in all three populations was significantly higher than in their nuclear regions. The elastic modulus of the peripheral region of osteoblasts was 12053+/-934 Pa, that of osteoid osteocytes was 7971+/-422 Pa and that of mature osteocytes was 4471+/-198 Pa. These results suggest that the level of elastic modulus of bone cells was proportional to the stage of changing from osteoblasts to osteocytes. The focal adhesion area of osteoblasts was significantly higher than that of osteocytes. The focal adhesion area of osteoblasts was decreased after treatment with GRGDS, however, that of osteocytes was not. The elastic modulus of osteoblasts and osteoid osteocytes were decreased after treatment with GRGDS. However, that of mature osteocytes was not changed. There were dynamic changes in the mechanical property of elastic modulus and in focal adhesions of bone cells.


Experimental Cell Research | 2012

Stage-specific embryonic antigen-4 identifies human dental pulp stem cells.

Noriaki Kawanabe; Satoko Murata; Hiroaki Fukushima; Yoshihito Ishihara; Takeshi Yanagita; Emmy Yanagita; Mitsuaki Ono; Hiroshi Kurosaka; Hiroshi Kamioka; Tomoo Itoh; Takuo Kuboki; Takashi Yamashiro

Embryonic stem cell-associated antigens are expressed in a variety of adult stem cells as well as embryonic stem cells. In the present study, we investigated whether stage-specific embryonic antigen (SSEA)-4 can be used to isolate dental pulp (DP) stem cells. DP cells showed plastic adherence, specific surface antigen expression, and multipotent differentiation potential, similar to mesenchymal stem cells (MSC). SSEA-4+ cells were found in cultured DP cells in vitro as well as in DP tissue in vivo. Flow cytometric analysis demonstrated that 45.5% of the DP cells were SSEA-4+. When the DP cells were cultured in the presence of all-trans-retinoic acid, marked downregulation of SSEA-3 and SSEA-4 and the upregulation of SSEA-1 were observed. SSEA-4+ DP cells showed a greater telomere length and a higher growth rate compared to ungated and SSEA-4- cells. A clonal assay demonstrated that 65.5% of the SSEA-4+ DP cells had osteogenic potential, and the SSEA-4+ clonal DP cells showed multilineage differentiation potential toward osteoblasts, chondrocytes, and neurons in vitro. In addition, the SSEA-4+ DP cells had the capacity to form ectopic bone in vivo. Thus, our results suggest that SSEA-4 is a specific cell surface antigen that can be used to identify DP stem cells.


Microscopy and Microanalysis | 2009

A method for observing silver-stained osteocytes in situ in 3-microm sections using ultra-high voltage electron microscopy tomography.

Hiroshi Kamioka; Sakhr A. Murshid; Yoshihito Ishihara; Naoko Kajimura; Toshiaki Hasegawa; Ryoko Ando; Yasuyo Sugawara; Takashi Yamashiro; Akio Takaoka; Teruko Takano-Yamamoto

Osteocytes are surrounded by hard bone matrix, and it has not been possible previously to directly observe the in situ architecture of osteocyte morphology in bone. Electron microscope tomography, however, is a technique that has the unique potential to provide three-dimensional (3D) visualization of cellular ultrastructure. This approach is based on reconstruction of 3D volumes from a tilt series of electron micrographs of cells, and resolution at the nanometer level has been achieved. We applied electron microscope tomography to thick sections of silver-stained osteocytes in bone using a Hitachi H-3000 ultra-high voltage electron microscope equipped with a 360 degrees tilt specimen holder, at an accelerating voltage of 2 MeV. Osteocytes with numerous processes and branches were clearly seen in the serial tilt series acquired from 3-microm-thick sections. Reconstruction of young osteocytes showed the 3D topographic morphology of the cell body and processes at high resolution. This morphological data on osteocytes should provide useful information to those who study osteocyte physiology and the several models used to explain their mechanosensory properties.


Bone | 2013

Ex vivo real-time observation of Ca2 + signaling in living bone in response to shear stress applied on the bone surface

Yoshihito Ishihara; Yasuyo Sugawara; Hiroshi Kamioka; Noriaki Kawanabe; Satoru Hayano; Tarek A. Balam; Keiji Naruse; Takashi Yamashiro

Bone cells respond to mechanical stimuli by producing a variety of biological signals, and one of the earliest events is intracellular calcium ([Ca(2+)](i)) mobilization. Our recently developed ex vivo live [Ca(2+)](i) imaging system revealed that bone cells in intact bone explants showed autonomous [Ca(2+)](i) oscillations, and osteocytes specifically modulated these oscillations through gap junctions. However, the behavior and connectivity of the [Ca(2+)](i) signaling networks in mechanotransduction have not been investigated in intact bone. We herein introduce a novel fluid-flow platform for probing cellular signaling networks in live intact bone, which allows the application of capillary-driven flow just on the bone explant surface while performing real-time fluorogenic monitoring of the [Ca(2+)](i) changes. In response to the flow, the percentage of responsive cells was increased in both osteoblasts and osteocytes, together with upregulation of c-fos expression in the explants. However, enhancement of the peak relative fluorescence intensity was not evident. Treatment with 18 α-GA, a reversible inhibitor of gap junction, significantly blocked the [Ca(2+)](i) responsiveness in osteocytes without exerting any major effect in osteoblasts. On the contrary, such treatment significantly decreased the flow-activated oscillatory response frequency in both osteoblasts and osteocytes. The stretch-activated membrane channel, when blocked by Gd(3+), is less affected in the flow-induced [Ca(2+)](i) response. These findings indicated that flow-induced mechanical stimuli accompanied the activation of the autonomous [Ca(2+)](i) oscillations in both osteoblasts and osteocytes via gap junction-mediated cell-cell communication and hemichannel. Although how the bone sense the mechanical stimuli in vivo still needs to be elucidated, the present study suggests that cell-cell signaling via augmented gap junction and hemichannel-mediated [Ca(2+)](i) mobilization could be involved as an early signaling event in mechanotransduction.


Journal of Biological Chemistry | 2012

Roles of heparan sulfate sulfation in dentinogenesis

Satoru Hayano; Hiroshi Kurosaka; Takeshi Yanagita; Ina Kalus; Fabian Milz; Yoshihito Ishihara; Md. Nurul Islam; Noriaki Kawanabe; Masahiro Saito; Hiroshi Kamioka; Taiji Adachi; Thomas Dierks; Takashi Yamashiro

Background: Cell surface heparan sulfate is an essential regulator of cell signaling. Results: Sulf 6-O-endosulfatase deficiency results in degenerative phenotypes, and HSPG sulfation status induces Wnt10a-mediated activation of odontoblast differentiation. Conclusion: Sulf-mediated desulfation is an important modification for the activation of the Wnt signaling in odontoblasts. Significance: This is the first molecular evidence for the functional roles of HSPG sulfation in dentin formation. Cell surface heparan sulfate (HS) is an essential regulator of cell signaling and development. HS traps signaling molecules, like Wnt in the glycosaminoglycan side chains of HS proteoglycans (HSPGs), and regulates their functions. Endosulfatases Sulf1 and Sulf2 are secreted at the cell surface to selectively remove 6-O-sulfate groups from HSPGs, thereby modifying the affinity of cell surface HSPGs for its ligands. This study provides molecular evidence for the functional roles of HSPG sulfation and desulfation in dentinogenesis. We show that odontogenic cells are highly sulfated on the cell surface and become desulfated during their differentiation to odontoblasts, which produce tooth dentin. Sulf1/Sulf2 double null mutant mice exhibit a thin dentin matrix and short roots combined with reduced expression of dentin sialophosphoprotein (Dspp) mRNA, encoding a dentin-specific extracellular matrix precursor protein, whereas single Sulf mutants do not show such defective phenotypes. In odontoblast cell lines, Dspp mRNA expression is potentiated by the activation of the Wnt canonical signaling pathway. In addition, pharmacological interference with HS sulfation promotes Dspp mRNA expression through activation of Wnt signaling. On the contrary, the silencing of Sulf suppresses the Wnt signaling pathway and subsequently Dspp mRNA expression. We also show that Wnt10a protein binds to cell surface HSPGs in odontoblasts, and interference with HS sulfation decreases the binding affinity of Wnt10a for HSPGs, which facilitates the binding of Wnt10a to its receptor and potentiates the Wnt signaling pathway, thereby up-regulating Dspp mRNA expression. These results demonstrate that Sulf-mediated desulfation of cellular HSPGs is an important modification that is critical for the activation of the Wnt signaling in odontoblasts and for production of the dentin matrix.

Collaboration


Dive into the Yoshihito Ishihara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge