Yoshihito Naito
University of Tokushima
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yoshihito Naito.
International Journal of Pharmaceutics | 2014
Yoshihito Naito; Takayuki Terukina; Silvia Galli; Yusuke Kozai; Stefan Vandeweghe; Tatsuaki Tagami; Tetsuya Ozeki; Tetsuo Ichikawa; Paulo G. Coelho; Ryo Jimbo
The present study describes the development of a microsphere capsule based on polylactide-co-glycolide (PLGA) loaded with simvastatin that was subsequently incorporated into synthetic bone cement. The osteogenic effect of simvastatin-loaded bone cement was in a critical sized defect in vivo to test the hypothesis the biologic response would be different depending on the dosage of simvastatin applied to bone cement. Our results showed that simvastatin loaded PLGA microspheres can be successfully obtained through O/W emulsion/solvent evaporation method with appropriate morphologic characteristics and high encapsulation efficiency for incorporation in bone cements. The biodegradable characteristic of the microspheres successfully presented a slow release and the duration of the release lasted for more than 1 month. The in vivo experiment revealed that the microspheres containing simvastatin significantly enhanced bone formation in the rabbit calvaria critical size defect.
Acta Biomaterialia | 2014
Silvia Galli; Yoshihito Naito; Johan Karlsson; Wenxiao He; Ikuya Miyamoto; Ying Xue; Martin Andersson; Kamal Mustafa; Ann Wennerberg; Ryo Jimbo
Local release of Mg ions from titanium implant surfaces has been shown to enhance implant retention and integration. To clarify the biological events that lead to this positive outcome, threaded implants coated with mesoporous TiO2 thin films were loaded with Mg-ions and placed in the tibia of rabbits for 3weeks, after surface characterization. Non-loaded mesoporous coated implants were used as controls. Peri-implant gene expression of a set of osteogenic and inflammatory assays was quantified by means of real-time quantitative polymerase chain reaction. The expression of three osteogenic markers (OC, RUNX-2 and IGF-1) was significantly more pronounced in the test specimens, suggesting that the release of Mg ions directly at the implant sites may stimulate an osteogenic environment. Furthermore, bone healing around implants was evaluated on histological slides and by diffraction-enhanced imaging (DEI), using synchrotron radiation. The histological analysis demonstrated new bone formation around all implants, without negative responses, with a significant increase in the number of threads filled with new bone for test surfaces. DEI analysis attested the high mineral content of the newly formed bone. Improved surface osteoconductivity and increased expression of genes involved in the bone regeneration were found for magnesium-incorporation of mesoporous TiO2 coatings.
Clinical Implant Dentistry and Related Research | 2015
Silvia Galli; Yoshihito Naito; Johan Karlsson; Wenxiao He; Martin Andersson; Ann Wennerberg; Ryo Jimbo
BACKGROUND Mesoporous coatings enable incorporation of functional substances and sustainedly release them at the implant site. One bioactive substance that can be incorporated in mesoporous is magnesium, which is strongly involved in bone metabolism and in osteoblast interaction. PURPOSE The aim of this experimental study was to evaluate the effect of incorporation of magnesium into mesoporous coatings of oral implants on early stages of osseointegration. MATERIAL AND METHODS Titanium implants were coated with thin films of mesoporous TiO2 having pore diameters of 6 nm and were loaded with magnesium. The implant surfaces were extensively characterized by means of interferometry, atomic force microscopy, scanning electron microscopy, and energy-dispersive spectroscopy and then placed in the tibiae of 10 rabbits. After 3 weeks of healing, osseointegration was evaluated by means of removal torque testing and histology and histomorphometry. RESULTS Histological and biomechanical analyses revealed no side effects and successful osseointegration of the implants. The biomechanical evaluation evidenced a significant effect of magnesium doping on strengthening the implant-bone interface. CONCLUSIONS A local release of magnesium from the implant surfaces enhances implant retention at the early stage of healing (3 weeks after implantation), which is highly desirable for early loading of the implant.
International Journal of Nanomedicine | 2016
Pär Johansson; Ryo Jimbo; Yoshihito Naito; Per Kjellin; Fredrik Currie; Ann Wennerberg
Polyether ether ketone (PEEK) possesses excellent mechanical properties similar to those of human bone and is considered the best alternative material other than titanium for orthopedic spine and trauma implants. However, the deficient osteogenic properties and the bioinertness of PEEK limit its fields of application. The aim of this study was to limit these drawbacks by coating the surface of PEEK with nano-scaled hydroxyapatite (HA) minerals. In the study, the biological response to PEEK, with and without HA coating, was investigated. Twenty-four screw-like and apically perforated implants in the rabbit femur were histologically evaluated at 3 weeks and 12 weeks after surgery. Twelve of the 24 implants were HA coated (test), and the remaining 12 served as uncoated PEEK controls. At 3 weeks and 12 weeks, the mean bone–implant contact was higher for test compared to control (P<0.05). The bone area inside the threads was comparable in the two groups, but the perforating hole showed more bone area for the HA-coated implants at both healing points (P<0.01). With these results, we conclude that nano-sized HA coating on PEEK implants significantly improved the osteogenic properties, and in a clinical situation this material composition may serve as an implant where a rapid bone fusion is essential.
Journal of Oral and Maxillofacial Research | 2014
Yoshihito Naito; Ryo Jimbo; Stefan Vandeweghe; Bruno Ramos Chrcanovic; Nick Tovar; Matthew Bryington; Tetsuo Ichikawa; Paulo G. Coelho; Ann Wennerberg
ABSTRACT Objectives This study aims to evaluate bone response to an implant surface modified by 1α,25-dihydroxyvitamin D3 [1.25-(OH)2D3] in vivo and the potential link between 1.25-(OH) 2D3 surface concentration and bone response. Material and Methods Twenty-eight implants were divided into 4 groups (1 uncoated control, 3 groups coated with 1.25-(OH)2D3 in concentrations of 10-8, 10-7 and 10-6 M respectively), placed in the rabbit tibia for 6 weeks. Topographical analyses were carried out on coated and uncoated discs using interferometer and atomic-force-microscope (AFM). Twenty-eight implants were histologically observed (bone-to-implant-contact [BIC] and new-bone-area [NBA]). Results The results showed that the 1.25-(OH)2D3 coated implants presented a tendency to osseointegrate better than the non-coated surfaces, the differences were not significant (P > 0.05). Conclusions The effect of 1.25-(OH)2D3 coating to implants suggested possible dose dependent effects, however no statistical differences could be found. It is thought that the base substrate topography (turned) could not sustain sufficient amount of 1.25-(OH)2D3 enough to present significant biologic responses. Thus, development a base substrate that can sustain 1.25-(OH)2D3 for a long period is necessary in future studies.
Biomedical Materials | 2016
Widyasri Prananingrum; Yoshihito Naito; Silvia Galli; Johan Bae; Kazumitsu Sekine; Kenichi Hamada; Tomotake; Ann Wennerberg; Ryo Jimbo; Tetsuo Ichikawa
Porous titanium has long been desired as a bone substitute material because of its ability to reduce the stress shielding in supporting bone. In order to achieve the various pore structures, we have evolved a moldless process combined with a space holder technique to fabricate porous titanium. This study aims to evaluate which pore size is most suitable for bone regeneration using our process. The mixture comprising Ti powder, wax binder and PMMA spacer was prepared manually at 70 °C which depended on the mixing ratio of each group. Group 1 had an average pore size of 60 μm, group 2 had a maximum pore size of 100 μm, group 3 had a maximum pore size of 200 μm and group 4 had a maximum pore size of 600 μm. These specimens were implanted into rabbit calvaria for three and 20 weeks. Thereafter, histomorphometrical evaluation was performed. In the histomorphometrical evaluation after three weeks, the group with a 600 μm pore size showed a tendency to greater bone ingrowth. However, after 20 weeks the group with a pore size of 100 μm showed significantly greater bone ingrowth than the other groups. This study suggested that bone regeneration into porous titanium scaffolds is pore size-dependent, while bone ingrowth was most prominent for the group with 100 μm-sized pores after 20 weeks in vivo.
Clinical Implant Dentistry and Related Research | 2015
Ryo Jimbo; Yoshihito Naito; Silvia Galli; Simone Berner; Michel Dard; Ann Wennerberg
BACKGROUND Clinically, there is a demand for mechanically stronger alloyed implants; however, not much evidence exists with regard to these materials. PURPOSE To test the osseointegration property of TiZr1317 implants in a rabbit model. MATERIALS AND METHODS Hydrophilic titanium-zirconium alloy (TiZr1317) implants with sand-blasted and acid-etched surface (test) and hydrophilic cpTi implants with the same treatment (control) were placed pairwise in the hind limbs (two in each tibia and one in each femur) of 36 Swedish lop-eared rabbits. After 2, 4, and 12 weeks (n = 12/time point), the bone samples were subjected to removal torque (RTQ, proximal tibia and femur) and histologic/histomorphometric (distal tibia) testings. RESULTS The control presented significantly higher RTQ than the test at 2 weeks (55 vs 36 Ncm). No differences were observed for other time points. The test presented higher mean BIC than the control (19.25 vs 13.89 %) at 4 weeks; however, there were no statistical differences for the following time point tested in vivo.The new bone area was significantly higher for the test at 4 weeks in the marrow areas. CONCLUSION The TiZr1317 implants presented comparable biologic outcomes to that of the cpTi implants through a 12-week evaluation period.
International Journal of Dentistry | 2013
Ali Alenezi; Yoshihito Naito; Martin Andersson; Bruno Ramos Chrcanovic; Ann Wennerberg; Ryo Jimbo
The aim of this study was to assess histologically and histomorphometrically the early bone forming properties after 3 weeks for 2 commercially available implants, one supposedly possessing nanotopography and one without, in a rabbit femur model. Twenty-four implants divided equally into 2 groups were utilized in this study. The first group (P-I MICRO+NANO) was a titanium oxide (TiO2) microblasted and noble gas ion bombarded surface while the second group (Ospol) was anodic oxidized surface with calcium and phosphate incorporation. The implants were placed in the rabbit femur unicortically and were allowed to heal for 3 weeks. After euthanasia, the samples were subjected to histologic sectioning and bone-implant contact and bone area were evaluated histomorphometrically under an optical microscope. The histomorphometric evaluation presented that the P-I MICRO+NANO implants demonstrated significantly higher new bone formation as compared to the Ospol implants. Within the limitations of this study, the results suggested that nanostructures presented significantly higher bone formation after 3 weeks in vivo, and the effect of chemistry was limited, which is indicative that nanotopography is effective at early healing periods.
Clinical Implant Dentistry and Related Research | 2015
Elisabeth A. W. J. De Wilde; Ryo Jimbo; Ann Wennerberg; Yoshihito Naito; Paul Coucke; Matthew Bryington; Stefan Vandeweghe; Hugo De Bruyn
OBJECTIVE To evaluate the soft tissue response in humans immunologically and histologically after placement of mini-implants coated with or without nano-size hydroxyapatite coatings. MATERIAL AND METHODS Commercially pure (cp) titanium mini-implants (n = 13) or nano-hydroxyapatite-coated ones (n = 12) were randomly placed into partially edentulous jaws. Crevicular fluid was sampled 1 week after placement and subjected to quantitative polymerase chain reaction analysis to explore the inflammatory markers. After 8 weeks, implants and surrounding soft and hard tissue were trephined, and undecalcified ground sections were prepared. Inflammatory cell accumulation within a defined region of interest in the soft tissue was quantified histomorphometrically. RESULTS No statistically significant differences in immunological response to the different implant surfaces were found for IL-6 (p = .438), TGF-β2 (p = .467), MMP-8 (p = .758), CCL-3 (p = .758), IL-8 (p = .771), and IL-1β (0.771). Histomorphometric evaluation presented no statistically significant difference between the two mini-implant surfaces with regards to number of inflammatory cells (p = .669). CONCLUSION Nano-hydroxyapatite-coated surfaces in the transmucosal region yielded similar inflammatory response and is suggested to be as biocompatible as commercially pure titanium surfaces.
Clinical, Cosmetic and Investigational Dentistry | 2015
Jonas Anderud; Peter Abrahamsson; Ryo Jimbo; Sten Isaksson; Erik Adolfsson; Johan Malmström; Yoshihito Naito; Ann Wennerberg
The purpose of the study was to evaluate histologically, whether vertical bone augmentation can be achieved using a hollow ceramic space maintaining device in a rabbit calvaria model. Furthermore, the chemistry of microporous hydroxyapatite and zirconia were tested to determine which of these two ceramics are most suitable for guided bone generation. 24 hollow domes in two different ceramic materials were placed subperiosteal on rabbit skull bone. The rabbits were sacrificed after 12 weeks and the histology results were analyzed regarding bone-to-material contact and volume of newly formed bone. The results suggest that the effect of the microporous structure of hydroxyapatite seems to facilitate for the bone cells to adhere to the material and that zirconia enhance a slightly larger volume of newly formed bone. In conclusion, the results of the current study demonstrated that ceramic space maintaining devices permits new bone formation and osteoconduction within the dome.