Yoshiho Ikeuchi
University of Tokyo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yoshiho Ikeuchi.
Molecular Cell | 2003
Akiko Soma; Yoshiho Ikeuchi; Satoru Kanemasa; Kazuo Kobayashi; Naotake Ogasawara; Tomotake Ote; Jun-ichi Kato; Kimitsuna Watanabe; Yasuhiko Sekine; Tsutomu Suzuki
The AUA codon-specific isoleucine tRNA (tRNA(Ile)) in eubacteria has the posttranscriptionally modified nucleoside lysidine (L) at the wobble position of the anticodon (position 34). This modification is a lysine-containing cytidine derivative that converts both the codon specificity of tRNA(Ile) from AUG to AUA and its amino acid specificity from methionine to isoleucine. We identified an essential gene (tilS; tRNA(Ile)-lysidine synthetase) that is responsible for lysidine formation in both Bacillus subtilis and Escherichia coli. The recombinant enzyme complexed specifically with tRNA(Ile) and synthesized L by utilizing ATP and lysine as substrates. The lysidine synthesis of this enzyme was shown to directly convert the amino acid specificity of tRNA(Ile) from methionine to isoleucine in vitro. Partial inactivation of tilS in vivo resulted in an AUA codon-dependent translational defect, which supports the notion that TilS is an RNA-modifying enzyme that plays a critical role in the accurate decoding of genetic information.
Cell | 2009
Albert H. Kim; Sidharth V. Puram; Parizad M. Bilimoria; Yoshiho Ikeuchi; Samantha Keough; Michael Wong; David H. Rowitch; Azad Bonni
The ubiquitin ligase anaphase-promoting complex (APC) recruits the coactivator Cdc20 to drive mitosis in cycling cells. However, the nonmitotic functions of Cdc20-APC have remained unexplored. We report that Cdc20-APC plays an essential role in dendrite morphogenesis in postmitotic neurons. Knockdown of Cdc20 in cerebellar slices and in postnatal rats in vivo profoundly impairs the formation of granule neuron dendrite arbors in the cerebellar cortex. Remarkably, Cdc20 is enriched at the centrosome in neurons, and the centrosomal localization is critical for Cdc20-dependent dendrite development. We also find that the centrosome-associated protein histone deacetylase 6 (HDAC6) promotes the polyubiquitination of Cdc20, stimulates the activity of centrosomal Cdc20-APC, and drives the differentiation of dendrites. These findings define a postmitotic function for Cdc20-APC in the morphogenesis of dendrites in the mammalian brain. The identification of a centrosomal Cdc20-APC ubiquitin signaling pathway holds important implications for diverse biological processes, including neuronal connectivity and plasticity.
The EMBO Journal | 2006
Akiko Noma; Yohei Kirino; Yoshiho Ikeuchi; Tsutomu Suzuki
Wybutosine (yW) is a tricyclic nucleoside with a large side chain found at the 3′‐position adjacent to the anticodon of eukaryotic phenylalanine tRNA. yW supports codon recognition by stabilizing codon–anticodon interactions during decoding on the ribosome. To identify genes responsible for yW synthesis from uncharacterized genes of Saccharomyces cerevisiae, we employed a systematic reverse genetic approach combined with mass spectrometry (‘ribonucleome analysis’). Four genes YPL207w, YML005w, YGL050w and YOL141w (named TYW1, TYW2, TYW3 and TYW4, respectively) were essential for yW synthesis. Mass spectrometric analysis of each modification intermediate of yW revealed its sequential biosynthetic pathway. TYW1 is an iron–sulfur (Fe–S) cluster protein responsible for the tricyclic formation. Multistep enzymatic formation of yW from yW‐187 could be reconstituted in vitro using recombinant TYW2, TYW3 and TYW4 with S‐adenosylmethionine, suggesting that yW synthesis might proceed through sequential reactions in a complex formed by multiple components assembled with the precursor tRNA. This hypothesis is also supported by the fact that plant ortholog is a large fusion protein consisting of TYW2 and TYW3 with the C‐terminal domain of TYW4.
Nature | 2006
Tomoyuki Numata; Yoshiho Ikeuchi; Shuya Fukai; Tsutomu Suzuki; Osamu Nureki
Uridine at the first anticodon position (U34) of glutamate, lysine and glutamine transfer RNAs is universally modified by thiouridylase into 2-thiouridine (s2U34), which is crucial for precise translation by restricting codon–anticodon wobble during protein synthesis on the ribosome. However, it remains unclear how the enzyme incorporates reactive sulphur into the correct position of the uridine base. Here we present the crystal structures of the MnmA thiouridylase–tRNA complex in three discrete forms, which provide snapshots of the sequential chemical reactions during RNA sulphuration. On enzyme activation, an α-helix overhanging the active site is restructured into an idiosyncratic β-hairpin-containing loop, which packs the flipped-out U34 deeply into the catalytic pocket and triggers the activation of the catalytic cysteine residues. The adenylated RNA intermediate is trapped. Thus, the active closed-conformation of the complex ensures accurate sulphur incorporation into the activated uridine carbon by forming a catalytic chamber to prevent solvent from accessing the catalytic site. The structures of the complex with glutamate tRNA further reveal how MnmA specifically recognizes its three different tRNA substrates. These findings provide the structural basis for a general mechanism whereby an enzyme incorporates a reactive atom at a precise position in a biological molecule.
Nature Chemical Biology | 2010
Yoshiho Ikeuchi; Satoshi Kimura; Tomoyuki Numata; Daigo Nakamura; Takashi Yokogawa; Toshihiko Ogata; Takeshi Wada; Takeo Suzuki; Tsutomu Suzuki
A modified base at the first (wobble) position of some tRNA anticodons is critical for deciphering the genetic code. In eukaryotes and eubacteria, AUA codons are decoded by tRNAsIle with modified bases pseudouridine (and/or inosine) and lysidine, respectively. The mechanism by which archaeal species translate AUA codons is unclear. We describe a polyamine-conjugated modified base, 2-agmatinylcytidine (agm(2)C or agmatidine), at the wobble position of archaeal tRNA(Ile) that decodes AUA codons specifically. We demonstrate that archaeal cells use agmatine to synthesize agm(2)C of tRNA(Ile). We also identified a new enzyme, tRNA(Ile)-agm(2)C synthetase (TiaS), that catalyzes agm(2)C formation in the presence of agmatine and ATP. Although agm(2)C is chemically similar to lysidine, TiaS constitutes a distinct class of enzyme from tRNA(Ile)-lysidine synthetase (TilS), suggesting that the decoding systems evolved convergently across domains.
Science | 2009
Yue Yang; Albert H. Kim; Tomoko Yamada; Bei Wu; Parizad M. Bilimoria; Yoshiho Ikeuchi; Núria de la Iglesia; Jie Shen; Azad Bonni
Cdc20-APC in Synapse Formation The E3 ubiquitin ligase Cdc20-anaphase promoting complex (Cdc20-APC) has important roles in the control of the cell division cycle. Yang et al. (p. 575) now show that Cdc20-APC also appears to be required for proper formation of synapses by developing neurons in the rat brain. When Cdc20-APC was depleted from cultured neurons or in the brains of developing rat pups, synapse formation was inhibited. The brain-enriched transcription factor NeuroD2 was shown to be a possible target of Cdc20-APC–stimulated degradation. NeuroD2 may act by promoting synthesis of Complexin II, a protein that regulates synaptic vesicle fusion. The ubiquitin ligase Cdc20-APC is required for proper synapse formation in the developing rat brain. Presynaptic axonal differentiation is essential for synapse formation and the establishment of neuronal circuits. However, the mechanisms that coordinate presynaptic development in the brain are largely unknown. We found that the major mitotic E3 ubiquitin ligase Cdc20-anaphase promoting complex (Cdc20-APC) regulates presynaptic differentiation in primary postmitotic mammalian neurons and in the rat cerebellar cortex. Cdc20-APC triggered the degradation of the transcription factor NeuroD2 and thereby promoted presynaptic differentiation. The NeuroD2 target gene encoding Complexin II, which acts locally at presynaptic sites, mediated the ability of NeuroD2 to suppress presynaptic differentiation. Thus, our findings define a Cdc20-APC ubiquitin signaling pathway that governs presynaptic development, which holds important implications for neuronal connectivity and plasticity in the brain.
PLOS Biology | 2011
Nadia K. Litterman; Yoshiho Ikeuchi; Gilbert Gallardo; Brenda C. O'Connell; Mathew E. Sowa; Steven P. Gygi; J. Wade Harper; Azad Bonni
The elaboration of dendrites in neurons requires secretory trafficking through the Golgi apparatus, but the mechanisms that govern Golgi function in neuronal morphogenesis in the brain have remained largely unexplored. Here, we report that the E3 ubiquitin ligase Cul7Fbxw8 localizes to the Golgi complex in mammalian brain neurons. Inhibition of Cul7Fbxw8 by independent approaches including Fbxw8 knockdown reveals that Cul7Fbxw8 is selectively required for the growth and elaboration of dendrites but not axons in primary neurons and in the developing rat cerebellum in vivo. Inhibition of Cul7Fbxw8 also dramatically impairs the morphology of the Golgi complex, leading to deficient secretory trafficking in neurons. Using an immunoprecipitation/mass spectrometry screening approach, we also uncover the cytoskeletal adaptor protein OBSL1 as a critical regulator of Cul7Fbxw8 in Golgi morphogenesis and dendrite elaboration. OBSL1 forms a physical complex with the scaffold protein Cul7 and thereby localizes Cul7 at the Golgi apparatus. Accordingly, OBSL1 is required for the morphogenesis of the Golgi apparatus and the elaboration of dendrites. Finally, we identify the Golgi protein Grasp65 as a novel and physiologically relevant substrate of Cul7Fbxw8 in the control of Golgi and dendrite morphogenesis in neurons. Collectively, these findings define a novel OBSL1-regulated Cul7Fbxw8 ubiquitin signaling mechanism that orchestrates the morphogenesis of the Golgi apparatus and patterning of dendrites, with fundamental implications for our understanding of brain development.
Genes & Development | 2010
Luis de la Torre-Ubieta; Brice Gaudilliere; Yue Yang; Yoshiho Ikeuchi; Tomoko Yamada; Sara DiBacco; Judith Stegmüller; Ulrich Schüller; Dervis A.M. Salih; David H. Rowitch; Anne Brunet; Azad Bonni
Neuronal polarity is essential for normal brain development and function. However, cell-intrinsic mechanisms that govern the establishment of neuronal polarity remain to be identified. Here, we report that knockdown of endogenous FOXO proteins in hippocampal and cerebellar granule neurons, including in the rat cerebellar cortex in vivo, reveals a requirement for the FOXO transcription factors in the establishment of neuronal polarity. The FOXO transcription factors, including the brain-enriched protein FOXO6, play a critical role in axo-dendritic polarization of undifferentiated neurites, and hence in a switch from unpolarized to polarized neuronal morphology. We also identify the gene encoding the protein kinase Pak1, which acts locally in neuronal processes to induce polarity, as a critical direct target gene of the FOXO transcription factors. Knockdown of endogenous Pak1 phenocopies the effect of FOXO knockdown on neuronal polarity. Importantly, exogenous expression of Pak1 in the background of FOXO knockdown in both primary neurons and postnatal rat pups in vivo restores the polarized morphology of neurons. These findings define the FOXO proteins and Pak1 as components of a cell-intrinsic transcriptional pathway that orchestrates neuronal polarity, thus identifying a novel function for the FOXO transcription factors in a unique aspect of neural development.
Nature Neuroscience | 2011
Sidharth V. Puram; Albert H. Kim; Yoshiho Ikeuchi; Joshua T. Wilson-Grady; Andreas Merdes; Steven P. Gygi; Azad Bonni
The protein kinase calcium/calmodulin-dependent kinase II (CaMKII) predominantly consists of the α and β isoforms in the brain. Although CaMKIIα functions have been elucidated, the isoform-specific catalytic functions of CaMKIIβ have remained unknown. Using knockdown analyses in primary rat neurons and in the rat cerebellar cortex in vivo, we report that CaMKIIβ operates at the centrosome in a CaMKIIα-independent manner to drive dendrite retraction and pruning. We also find that the targeting protein PCM1 (pericentriolar material 1) localizes CaMKIIβ to the centrosome. Finally, we uncover the E3 ubiquitin ligase Cdc20-APC (cell division cycle 20–anaphase promoting complex) as a centrosomal substrate of CaMKIIβ. CaMKIIβ phosphorylates Cdc20 at Ser51, which induces Cdc20 dispersion from the centrosome, thereby inhibiting centrosomal Cdc20-APC activity and triggering the transition from growth to retraction of dendrites. Our findings define a new, isoform-specific function for CaMKIIβ that regulates ubiquitin signaling at the centrosome and thereby orchestrates dendrite patterning, with important implications for neuronal connectivity in the brain.
The Journal of Neuroscience | 2009
Yoshiho Ikeuchi; Judith Stegmüller; Stuart J. Netherton; Mai Anh Huynh; Masayuki Masu; David A. Frank; Shirin Bonni; Azad Bonni
The transcriptional corepressor SnoN is a critical regulator of axonal morphogenesis, but how SnoN drives axonal growth is unknown. Here, we report that gene-profiling analyses in cerebellar granule neurons reveal that the large majority of genes altered upon SnoN knockdown are surprisingly downregulated, suggesting that SnoN may activate transcription in neurons. Accordingly, we find that the transcriptional coactivator p300 interacts with SnoN, and p300 plays a critical role in SnoN-induced axon growth. We also identify the gene encoding the signaling scaffold protein Ccd1 as a critical target of SnoN in neurons. Ccd1 localizes to the actin cytoskeleton, is enriched at axon terminals in neurons, and activates the axon growth-promoting kinase JNK (c-Jun N-terminal protein kinase). Knockdown of Ccd1 in neurons reduces axonal length and suppresses the ability of SnoN to promote axonal growth. Importantly, Ccd1 knockdown in rat pups profoundly impairs the formation of granule neuron parallel fiber axons in the rat cerebellar cortex in vivo. These findings define a novel SnoN–Ccd1 link that promotes axonal growth in the mammalian brain, with important implications for axonal development and regeneration.
Collaboration
Dive into the Yoshiho Ikeuchi's collaboration.
National Institute of Advanced Industrial Science and Technology
View shared research outputs