Yoshiki Akakabe
Kyoto Prefectural University of Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yoshiki Akakabe.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2010
Yusuke Nakagawa; Koji Ikeda; Yoshiki Akakabe; Masahiro Koide; Maki Uraoka; Kotaro Yutaka; Ritsuko Kurimoto-Nakano; Tomosaburo Takahashi; Satoaki Matoba; Mitsuhiko Okigaki; Hiroaki Matsubara
Objective—Vascular calcification is an important risk factor for cardiovascular diseases. Here, we investigated a role of dedifferentiated vascular smooth muscle cells (VSMCs) in the atherosclerotic intimal calcification. Methods and Results—We prepared human cultured VSMCs in either redifferentiatiated or dedifferentiated state and analyzed the gene expressions of bone-calcification regulatory factors. Expression of bone morphogenetic protein-2 (BMP-2), a potent initiator for osteoblast differentiation, was significantly enhanced in dedifferentiated VSMCs. Furthermore, endogenous BMP-2 antagonists, such as noggin, chordin, and matrix gamma-carboxyglutamic acid protein, were all downregulated in the dedifferentiated VSMCs. Conditioned medium from dedifferentiated VSMCs, but not from redifferentiated VSMCs, stimulated the osteoblastic differentiation of the mesenchymal progenitor C2C12 cells, which was abolished by BMP-2 knockdown. In atherosclerotic intima from apolipoprotein (apo)E-deficient mice, &agr;SM-actin-positive cells, presumably dedifferentiated VSMCs, expressed BMP-2. We generated BMP-2-transgenic mice using &agr;SM-actin promoter and crossed them with apoE-deficient mice (BMP-2-transgenic/apoE-knockout). Significantly accelerated atherosclerotic intimal calcification was detected in BMP-2-transgenic/apoE-knockout mice, although serum lipid concentration and atherosclerotic plaque size were not different from those in apoE-knockout mice. Enhanced calcification appeared to be associated with the frequent emergence of osteoblast-like cells in atherosclerotic intima in BMP-2-transgenic/apoE-knockout mice. Conclusion—Our findings collectively demonstrate an important role of dedifferentiated VSMCs in the pathophysiology of atherosclerotic calcification through activating paracrine BMP-2 osteogenic signals.
Biochemical and Biophysical Research Communications | 2009
Maki Uraoka; Koji Ikeda; Yusuke Nakagawa; Masahiro Koide; Yoshiki Akakabe; Ritsuko Nakano-Kurimoto; Tomosaburo Takahashi; Satoaki Matoba; Mitsuhiko Okigaki; Hiroaki Matsubara
Prorenin is an enzymatically inactive precursor of renin, and its biological function in endothelial cells (ECs) is unknown despite its relevance with the incidence of diabetic microvascular complications. Recently, (pro)renin receptor was identified, and the receptor-associated prorenin system has been discovered, whereas its expression as well as function in ECs remain unclear. In the present study, we found that ECs express the (pro)renin receptor, and that prorenin provoked ERK activation through (pro)renin receptor independently of the renin-angiotensin system (RAS). Prorenin stimulated the proliferation, migration and tube-formation of ECs, while it inhibited endothelial apoptosis induced by serum and growth factor depletion. MEK inhibitor abrogated these proangiogenic effects of prorenin, while AT1 receptor antagonist or angiotensin-converting enzyme inhibitor failed to block them. In vivo neovascularization in the Matrigel-plugs implanted into mouse flanks was significantly enhanced by prorenin, in which significant ERK activation was detected in ECs. Furthermore, tumor xenografts stably transfected with prorenin demonstrated the significantly accelerated growth rate concomitantly with enhanced intratumoral neovascularization. Our data demonstrated that the RAS-independent (pro)renin receptor-mediated signal transduction plays a pivotal role in the regulation of ECs function as well as in the neovascularization, and thus prorenin is potentially involved in the pathophysiology of diabetic microvascular complications as well as cancers.
Biochemical and Biophysical Research Communications | 2012
Koji Ikeda; Yuka Souma; Yoshiki Akakabe; Youhei Kitamura; Kiyonari Matsuo; Yoshiaki Shimoda; Tomomi Ueyama; Satoaki Matoba; Mitsuhiko Okigaki; Hiroaki Matsubara
Vascular calcification is a major risk factor for the cardiovascular disease, yet its underlying molecular mechanisms remain to be elucidated. Recently, we identified that osteogenic signals via bone morphogenetic protein (BMP)-2 exerted by vascular smooth muscle cells (VSMCs) play a crucial role in the formation of atherosclerotic plaque calcification. Here we report a synergistic interaction between macrophages and VSMCs with respect to plaque calcification. Treatment with conditioned medium (CM) of macrophages dramatically enhanced BMP-2 expression in VSMCs, while it substantially reduced the expression of matrix Gla-protein (MGP) that inhibits the BMP-2 osteogenic signaling. As a result, macrophages significantly accelerated the osteoblastic differentiation of C2C12 cells induced by VSMC-CM. In contrast, macrophage-CM did not enhance the osteoblastic gene expressions in VSMCs, indicating that macrophages unlikely induced the osteoblastic trans-differentiation of VSMCs. We then examined the effect of recombinant TNF-α and IL-1β on the VSMC-derived osteogenic signals. Similar to the macrophage-CM, both cytokines enhanced BMP-2 expression and reduced MGP expression in VSMCs. Nevertheless, only the neutralization of TNF-α but not IL-1β attenuated the effect of macrophage-CM on the expression of these genes in VSMCs, due to the very low concentration of IL-1β in the macrophage-CM. On the other hand, VSMCs significantly enhanced IL-1β expression in macrophages, which might in turn accelerate the VSMC-mediated osteogenic signals. Together, we identified a unique role of macrophages in the formation of plaque calcification in coordination with VSMCs. This interaction between macrophages and VSMCs is a potential therapeutic target to treat and prevent the atherosclerotic plaque calcification.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Masahiro Koide; Koji Ikeda; Yoshiki Akakabe; Youhei Kitamura; Tomomi Ueyama; Satoaki Matoba; Hiroyuki Yamada; Mitsuhiko Okigaki; Hiroaki Matsubara
Endothelial and endothelial progenitor cells (ECs and EPCs) play a fundamental role in angiogenesis that is essential for numerous physiological and pathological processes. The phosphatase and tensin homolog (PTEN)/ phosphoinositide 3-kinase (PI3K) pathway has been implicated in angiogenesis, but the mechanism in the regulation of this pathway in ECs and EPCs is poorly understood. Here we show that ARIA (apoptosis regulator through modulating IAP expression), a transmembrane protein that we recently identified, regulates the PTEN/PI3K pathway in ECs and EPCs and controls developmental and postnatal angiogenesis in vivo. We found that ARIA is abundantly expressed in EPCs and regulates their angiogenic functions by modulating PI3K/Akt/endothelial nitric oxide synthase (eNOS) signaling. Genetic deletion of ARIA caused nonfatal bleeding during embryogenesis, in association with increased small vessel density and altered expression of various vascular growth factors including angiopoietins and VEGF receptors. Postnatal neovascularization induced by critical limb ischemia was substantially enhanced in ARIA-null mice, in conjunction with more bone marrow (BM)-derived ECs detected in ischemic muscles. Administration of PI3K or NO synthase inhibitor completely abolished the enhanced neovascularization in ARIA−/− mice. Mechanistically, we identified that ARIA interacts with PTEN at the intracellular domain independently of the PTEN phosphorylation in its C-terminal tail. Overexpressed ARIA increased PTEN in the membrane fraction, whereas ARIA-silencing reduced the membrane-associated PTEN, resulting in modified PI3K/Akt signaling. Taken together, our findings establish a previously undescribed mode of regulation of the PTEN/PI3K/Akt pathway by ARIA, and reveal a unique mechanism in the control of angiogenesis. These functions of ARIA might offer a unique therapeutic potential.
Hypertension | 2011
Maki Uraoka; Koji Ikeda; Ritsuko Kurimoto-Nakano; Yusuke Nakagawa; Masahiro Koide; Yoshiki Akakabe; Youhei Kitamura; Tomomi Ueyama; Satoaki Matoba; Mitsuhiko Okigaki; Hiroaki Matsubara
Ageing is an important risk factor for ischemic cardiovascular diseases, although its underlying molecular mechanisms remain to be elucidated. Here, we report a crucial role of Bcl-2 in the impaired angiogenic functions in senescent endothelial cells (ECs) by modulating the mitochondrial redox state. Cellular senescence impaired angiogenic functions in ECs without attenuating the mitogen-activated protein kinase or Akt signaling, and vascular endothelial growth factor receptor 2 or Tie-2 expressions. We identified that Bcl-2 expression was markedly reduced in 3 independent models for senescent ECs, and pharmacological inhibition, as well as small interfering RNA-mediated gene silencing of Bcl-2, significantly impaired the angiogenic functions in young ECs. Bcl-2 has an antioxidative role by locating the glutathione at mitochondria, and we found that mitochondrial oxidative stress was significantly augmented in senescent ECs, in association with reduced mitochondria-associated glutathione. Transfection of Bcl-2 in senescent ECs significantly reduced the mitochondrial oxidative stress, restored the mitochondrial membrane potential, and improved the angiogenic capacity. Furthermore, gene transfer of Bcl-2 using adenovirus significantly improved the in vivo angiogenesis in the Matrigel plugs implanted into aged mice, whereas the Bcl-2 inhibitor reduced the angiogenesis in the Matrigel plugs implanted into young mice. Together, Bcl-2 plays a crucial role in the regulation of the mitochondrial redox state in ECs, and, thus, loss of Bcl-2 during the senescence exacerbates the impaired angiogenesis by augmenting the mitochondrial oxidative stress.
Journal of Biological Chemistry | 2014
Youhei Kitamura; Masahiro Koide; Yoshiki Akakabe; Kiyonari Matsuo; Yoshiaki Shimoda; Yuka Soma; Takehiro Ogata; Tomomi Ueyama; Satoaki Matoba; Hiroyuki Yamada; Koji Ikeda
Background: The PI3K/Akt signaling regulates many aspects of cardiomyocyte homeostasis. Results: ARIA regulates cardiac PI3K/Akt signaling and modifies cardiomyocyte death and stress-induced cardiac dysfunction. Conclusion: ARIA is a novel factor involved in the regulation of cardiac PI3K/Akt signals. Significance: ARIA-mediated manipulation of cardiac PI3K/Akt signaling is an intriguing therapeutic target to treat cardiac dysfunction. PI3K/Akt signaling plays an important role in the regulation of cardiomyocyte death machinery, which can cause stress-induced cardiac dysfunction. Here, we report that apoptosis regulator through modulating IAP expression (ARIA), a recently identified transmembrane protein, regulates the cardiac PI3K/Akt signaling and thus modifies the progression of doxorubicin (DOX)-induced cardiomyopathy. ARIA is highly expressed in the mouse heart relative to other tissues, and it is also expressed in isolated rat cardiomyocytes. The stable expression of ARIA in H9c2 cardiac muscle cells increased the levels of membrane-associated PTEN and subsequently reduced the PI3K/Akt signaling and the downstream phosphorylation of Bad, a proapoptotic BH3-only protein. When challenged with DOX, ARIA-expressing H9c2 cells exhibited enhanced apoptosis, which was reversed by the siRNA-mediated silencing of Bad. ARIA-deficient mice exhibited normal heart morphology and function. However, DOX-induced cardiac dysfunction was significantly ameliorated in conjunction with reduced cardiomyocyte death and cardiac fibrosis in ARIA-deficient mice. Phosphorylation of Akt and Bad was substantially enhanced in the heart of ARIA-deficient mice even after treatment with DOX. Moreover, repressing the PI3K by cardiomyocyte-specific expression of dominant-negative PI3K (p110α) abolished the cardioprotective effects of ARIA deletion. Notably, targeted activation of ARIA in cardiomyocytes but not in endothelial cells reduced the cardiac PI3K/Akt signaling and exacerbated the DOX-induced cardiac dysfunction. These studies, therefore, revealed a previously undescribed mode of manipulating cardiac PI3K/Akt signaling by ARIA, thus identifying ARIA as an attractive new target for the prevention of stress-induced myocardial dysfunction.
Nature Communications | 2013
Yoshiki Akakabe; Masahiro Koide; Youhei Kitamura; Kiyonari Matsuo; Tomomi Ueyama; Satoaki Matoba; Hiroyuki Yamada; Keishi Miyata; Yuichi Oike; Koji Ikeda
Insulin resistance is closely associated with obesity and is one of the earliest symptoms of type-2 diabetes. Endothelial cells are involved in the pathogenesis of insulin resistance through their role in insulin delivery and adipose tissue angiogenesis. Here we show that Ecscr (endothelial cell surface expressed chemotaxis and apoptosis regulator; also known as ARIA), the transmembrane protein that regulates endothelial cell signalling, is highly expressed in white and brown adipose tissues, and regulates energy metabolism and glucose homeostasis by modulating endothelial cell functions. Ecscr-deficient mice fed a normal chow show improved glucose tolerance and enhanced insulin sensitivity. We demonstrate that Ecscr deletion enhances the insulin-mediated Akt/endothelial nitric oxide synthase activation in endothelial cells, which increases insulin delivery into the skeletal muscle. Ecscr deletion also protects mice on a high-fat diet from obesity and obesity-related metabolic disorders by enhancing adipose tissue angiogenesis. Conversely, targeted activation of Ecscr in endothelial cells impairs glucose tolerance and predisposes mice to diet-induced obesity. Our results suggest that the inactivation of Ecscr enhances insulin sensitivity and may represent a new therapeutic strategy for treating metabolic syndrome.
American Journal of Physiology-heart and Circulatory Physiology | 2013
Hiroyuki Kawahito; Hiroyuki Yamada; Daisuke Irie; Taku Kato; Yoshiki Akakabe; Sou Kishida; Hiroki Takata; Noriyuki Wakana; Takehiro Ogata; Koji Ikeda; Tomomi Ueyama; Satoaki Matoba; Yasukiyo Mori; Hiroaki Matsubara
Chronic kidney disease (CKD) is an independent risk factor for the development of cardiovascular disease. The perivascular adipose tissue is closely implicated in the development of atherosclerosis; however, the contribution to CKD-associated atherogenesis remains undefined. Eight-week-old apoE-deficient mice were uninephrectomized and fed a high-cholesterol diet starting at 12 wk of age. The atherosclerotic lesion area in the thoracic aorta was comparable in 16-wk-old uninephrectomized (UNX) mice and sham control mice; however, the lesion area was markedly exaggerated in 20-wk-old UNX mice compared with the control (54%, P < 0.05). While the accumulation of monocytes/macrophages and the mRNA expression levels of inflammatory cytokines/chemokines in the thoracic periaortic adipose tissue (PAT) did not differ between the two groups, angiotensinogen (AGT) mRNA expression and the angiotensin II (ANG II) concentration in the PAT were significantly higher in 16-wk-old UNX mice than in the control (1.9- and 1.5-fold increases vs. control, respectively; P < 0.05). ANG II concentrations in both the plasma and epididymal white adipose tissue (WAT) were comparable between the two groups, suggesting that PAT-specific activation of the renin-angiotensin system (RAS) is primarily involved in CKD-associated atherogenesis. The homeostasis model assessment-insulin resistance (HOMA-IR) index and plasma insulin level after glucose loading were significantly elevated in 16-wk-old UNX mice. In vitro stimulation of preadipocytes with insulin exaggerated the AGT mRNA expression along with increased mRNA expression of PPARγ. These findings suggest that PAT-specific RAS activation probably primarily contributes in accelerating atherosclerotic development in UNX mice and could thus represent a therapeutic target for preventing CKD-associated atherogenesis.
Journal of Biological Chemistry | 2015
Kiyonari Matsuo; Yoshiki Akakabe; Youhei Kitamura; Yoshiaki Shimoda; Kazunori Ono; Tomomi Ueyama; Satoaki Matoba; Hiroyuki Yamada; Kinta Hatakeyama; Yujiro Asada; Noriaki Emoto; Koji Ikeda
Background: Macrophages play central roles in the whole process of atherosclerosis. Results: ARIA regulates macrophage foam cell formation at least in part by modulating ACAT-1 expression. Conclusion: ARIA is a novel factor involved in the pathogenesis of atherosclerosis. Significance: Loss of ARIA ameliorated atherosclerosis by reducing macrophage foam cell formation; inhibition of ARIA may represent a new line of therapy against atherosclerosis. Atherosclerosis is the primary cause for cardiovascular disease. Here we identified a novel mechanism underlying atherosclerosis, which is provided by ARIA (apoptosis regulator through modulating IAP expression), the transmembrane protein that we recently identified. ARIA is expressed in macrophages present in human atherosclerotic plaque as well as in mouse peritoneal macrophages. When challenged with acetylated LDL, peritoneal macrophages isolated from ARIA-deficient mice showed substantially reduced foam cell formation, whereas the uptake did not differ from that in wild-type macrophages. Mechanistically, loss of ARIA enhanced PI3K/Akt signaling and consequently reduced the expression of acyl coenzyme A:cholesterol acyltransferase-1 (ACAT-1), an enzyme that esterifies cholesterol and promotes its storage, in macrophages. Inhibition of PI3K abolished the reduction in ACAT-1 expression and foam cell formation in ARIA-deficient macrophages. In contrast, overexpression of ARIA reduced Akt activity and enhanced foam cell formation in RAW264.7 macrophages, which was abrogated by treatment with ACAT inhibitor. Of note, genetic deletion of ARIA significantly reduced the atherosclerosis in ApoE-deficient mice. Oil red-O-positive lipid-rich lesion was reduced, which was accompanied by an increase of collagen fiber and decrease of necrotic core lesion in atherosclerotic plaque in ARIA/ApoE double-deficient mice. Analysis of bone marrow chimeric mice revealed that loss of ARIA in bone marrow cells was sufficient to reduce the atherosclerogenesis in ApoE-deficient mice. Together, we identified a unique role of ARIA in the pathogenesis of atherosclerosis at least partly by modulating macrophage foam cell formation. Our results indicate that ARIA could serve as a novel pharmacotherapeutic target for the treatment of atherosclerotic diseases.
Amyloid | 2009
Naohiko Nakanishi; Takahisa Sawada; Rena Sato; Kenji Yanishi; Yoshiki Akakabe; Shinya Nishizawa; Akira Kuroyanagi; Yoshinori Tsubakimoto; Akihiro Matsui; Takeshi Nakamura; Hirokazu Shiraishi; Akiyoshi Matsumuro; Takeshi Shirayama; Hiroaki Matsubara
There are more than a few risks of hemorrhage complication in patients with amyloidosis. Although most cases with amyloidosis exhibit minor bleeding manifestations, they can be occasionally associated with life-threatening problems. To our knowledge, there are only a few cases of spontaneous pericardial hematoma associated with amyloidosis. We here report a patient who suddenly died of cardiac tamponade with massive pericardial hematoma 7 years after the diagnosis of familial amyloid polyneuropathy (FAP). A 69-year-old female with FAP with cardiogenic shock was admitted to our emergency room. Although she previously underwent permanent pacemaker implantation for atrial fibrillation with slow ventricular response, electrocardiogram showed a critical pacing failure. Emergent telemetry check revealed a sudden extreme increase of pacing capture threshold in the right ventricle. Maximum pacing voltage could not improve the critical condition, and she died 7 h after arrival. Autopsy showed a massive pericardial hematoma in the right ventricular free wall, and microscopic examination revealed typical amyloid deposition in the arterial wall of the pericardium. In this case, it is assumed that a sudden rupture of fragile pericardial vessels with amyloid deposition led to the lethal pericardial hematoma.