Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoshiki Mochizuki is active.

Publication


Featured researches published by Yoshiki Mochizuki.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Genome-wide suppression of aberrant mRNA-like noncoding RNAs by NMD in Arabidopsis

Yukio Kurihara; Akihiro Matsui; Kousuke Hanada; Makiko Kawashima; Junko Ishida; Taeko Morosawa; Maho Tanaka; Eli Kaminuma; Yoshiki Mochizuki; Akihiro Matsushima; Tetsuro Toyoda; Kazuo Shinozaki; Motoaki Seki

The nonsense-mediated mRNA decay (NMD) pathway is a well-known eukaryotic surveillance mechanism that eliminates aberrant mRNAs that contain a premature termination codon (PTC). The UP-Frameshift (UPF) proteins, UPF1, UPF2, and UPF3, are essential for normal NMD function. Several NMD substrates have been identified, but detailed information on NMD substrates is lacking. Here, we noticed that, in Arabidopsis, most of the mRNA-like nonprotein-coding RNAs (ncRNAs) have the features of an NMD substrate. We examined the expression profiles of 2 Arabidopsis mutants, upf1-1 and upf3-1, using a whole-genome tiling array. The results showed that expression of not only protein-coding transcripts but also many mRNA-like ncRNAs (mlncRNAs), including natural antisense transcript RNAs (nat-RNAs) transcribed from the opposite strands of the coding strands, were up-regulated in both mutants. The percentage of the up-regulated mlncRNAs to all expressed mlncRNAs was much higher than that of the up-regulated protein-coding transcripts to all expressed protein- coding transcripts. This finding demonstrates that one of the most important roles of NMD is the genome-wide suppression of the aberrant mlncRNAs including nat-RNAs.


Plant Journal | 2010

Genome-wide analysis of endogenous abscisic acid-mediated transcription in dry and imbibed seeds of Arabidopsis using tiling arrays.

Masanori Okamoto; Kiyoshi Tatematsu; Akihiro Matsui; Taeko Morosawa; Junko Ishida; Maho Tanaka; Takaho A. Endo; Yoshiki Mochizuki; Tetsuro Toyoda; Yuji Kamiya; Kazuo Shinozaki; Eiji Nambara; Motoaki Seki

The phytohormone abscisic acid (ABA) plays important roles in the induction and maintenance of seed dormancy. Although application of exogenous ABA inhibits germination, the effects of exogenous ABA on ABA-mediated gene transcription differ from those of endogenous ABA. To understand how endogenous ABA regulates the transcriptomes in seeds, we performed comprehensive expression analyses using whole-genome Affymetrix tiling arrays in two ABA metabolism mutants - an ABA-deficient mutant (aba2) and an ABA over-accumulation mutant (cyp707a1a2a3 triple mutant). Hierarchical clustering and principal components analyses showed that differences in endogenous ABA levels do not influence global expression of stored mRNA in dry seeds. However, the transcriptome after seed imbibition was related to endogenous ABA levels in both types of mutant. Endogenous ABA-regulated genes expressed in imbibed seeds included those encoding key ABA signaling factors and gibberellin-related components. In addition, cohorts of ABA-upregulated genes partially resembled those of dormant genes, whereas ABA-downregulated genes were partially overlapped with after-ripening-regulated genes. Bioinformatic analyses revealed that 6105 novel genes [non-Arabidopsis Genome Initiative (AGI) transcriptional units (TUs)] were expressed from unannotated regions. Interestingly, approximately 97% of non-AGI TUs possibly encoded hypothetical non-protein-coding RNAs, including a large number of antisense RNAs. In dry and imbibed seeds, global expression profiles of non-AGI TUs were similar to those of AGI genes. For both non-AGI TUs and AGI code genes, we identified those that were regulated differently in embryo and endosperm tissues. Our results suggest that transcription in Arabidopsis seeds is more complex and dynamic than previously thought.


Biochemical and Biophysical Research Communications | 2008

Identification of the candidate genes regulated by RNA-directed DNA methylation in Arabidopsis.

Yukio Kurihara; Akihiro Matsui; Makiko Kawashima; Eli Kaminuma; Junko Ishida; Taeko Morosawa; Yoshiki Mochizuki; Norio Kobayashi; Tetsuro Toyoda; Kazuo Shinozaki; Motoaki Seki

RNA-directed DNA methylation (RdDM) is a process in which 24 nucleotide (nt) small interfering RNAs (siRNAs) guide de novo cytosine methylation in the homologous genomic DNA region. Of several factors involving 24 nt siRNA accumulation, RNA-dependent RNA polymerase 2 (RDR2) is a key component, because accumulation of 24 nt siRNA disappears in the Arabidopsis rdr2 mutant. Here, we compared expression profiles among wild-type, rdr2-1 and ddc (drm1drm2cmt3), DNA methyltransferase triple mutant, using a whole genome tiling array to identify the candidate genes directly downregulated by RdDM-related 24 nt siRNAs. Of the transcripts upregulated in the mutants, we searched for those whose coding regions or flanking regions have siRNA-generating loci. We found upregulated expression of 18 transcripts with AGI codes and 19 predicted transcriptional units (TUs) with siRNA loci in both rdr2-1 and ddc. Our study provided important information for understanding the relationship between RdDM and the identified candidate genes.


Nucleic Acids Research | 2009

PosMed (Positional Medline): prioritizing genes with an artificial neural network comprising medical documents to accelerate positional cloning

Yuko Yoshida; Yuko Makita; Naohiko Heida; Satomi Asano; Akihiro Matsushima; Manabu Ishii; Yoshiki Mochizuki; Hiroshi Masuya; Shigeharu Wakana; Norio Kobayashi; Tetsuro Toyoda

PosMed (http://omicspace.riken.jp/) prioritizes candidate genes for positional cloning by employing our original database search engine GRASE, which uses an inferential process similar to an artificial neural network comprising documental neurons (or ‘documentrons’) that represent each document contained in databases such as MEDLINE and OMIM. Given a user-specified query, PosMed initially performs a full-text search of each documentron in the first-layer artificial neurons and then calculates the statistical significance of the connections between the hit documentrons and the second-layer artificial neurons representing each gene. When a chromosomal interval(s) is specified, PosMed explores the second-layer and third-layer artificial neurons representing genes within the chromosomal interval by evaluating the combined significance of the connections from the hit documentrons to the genes. PosMed is, therefore, a powerful tool that immediately ranks the candidate genes by connecting phenotypic keywords to the genes through connections representing not only gene–gene interactions but also other biological interactions (e.g. metabolite–gene, mutant mouse–gene, drug–gene, disease–gene and protein–protein interactions) and ortholog data. By utilizing orthologous connections, PosMed facilitates the ranking of human genes based on evidence found in other model species such as mouse. Currently, PosMed, an artificial superbrain that has learned a vast amount of biological knowledge ranging from genomes to phenomes (or ‘omic space’), supports the prioritization of positional candidate genes in humans, mouse, rat and Arabidopsis thaliana.


Methods of Molecular Biology | 2010

Arabidopsis Tiling Array Analysis to Identify the Stress-Responsive Genes

Akihiro Matsui; Junko Ishida; Taeko Morosawa; Masanori Okamoto; Jong-Myong Kim; Yukio Kurihara; Makiko Kawashima; Maho Tanaka; Taiko Kim To; Kentaro Nakaminami; Eli Kaminuma; Takaho A. Endo; Yoshiki Mochizuki; Shuji Kawaguchi; Norio Kobayashi; Kazuo Shinozaki; Tetsuro Toyoda; Motoaki Seki

Plants respond and adapt to drought, cold, and high-salinity stresses. Stress-inducible gene products function in the stress response and tolerance in plants. Using cDNA microarrays and oligonucleotide microarrays, stress-inducible genes have been identified in various plant species so far. Recently, tiling array technology has become a powerful tool for the whole-genome transcriptome analysis. We applied the Arabidopsis Affymetrix tiling arrays to study the whole-genome transcriptome under drought, cold, and high-salinity stresses and identified a large number of drought, cold, and high-salinity stress-inducible genes and transcriptional units (TUs).


Nucleic Acids Research | 2011

The RIKEN integrated database of mammals

Hiroshi Masuya; Yuko Makita; Norio Kobayashi; Koro Nishikata; Yuko Yoshida; Yoshiki Mochizuki; Koji Doi; Terue Takatsuki; Kazunori Waki; Nobuhiko Tanaka; Manabu Ishii; Akihiro Matsushima; Satoshi Takahashi; Atsushi Hijikata; Kouji Kozaki; Teiichi Furuichi; Hideya Kawaji; Shigeharu Wakana; Yukio Nakamura; Atsushi Yoshiki; Takehide Murata; Kaoru Fukami-Kobayashi; S. Sujatha Mohan; Osamu Ohara; Yoshihide Hayashizaki; Riichiro Mizoguchi; Yuichi Obata; Tetsuro Toyoda

The RIKEN integrated database of mammals (http://scinets.org/db/mammal) is the official undertaking to integrate its mammalian databases produced from multiple large-scale programs that have been promoted by the institute. The database integrates not only RIKEN’s original databases, such as FANTOM, the ENU mutagenesis program, the RIKEN Cerebellar Development Transcriptome Database and the Bioresource Database, but also imported data from public databases, such as Ensembl, MGI and biomedical ontologies. Our integrated database has been implemented on the infrastructure of publication medium for databases, termed SciNetS/SciNeS, or the Scientists’ Networking System, where the data and metadata are structured as a semantic web and are downloadable in various standardized formats. The top-level ontology-based implementation of mammal-related data directly integrates the representative knowledge and individual data records in existing databases to ensure advanced cross-database searches and reduced unevenness of the data management operations. Through the development of this database, we propose a novel methodology for the development of standardized comprehensive management of heterogeneous data sets in multiple databases to improve the sustainability, accessibility, utility and publicity of the data of biomedical information.


Bioinformatics | 2007

OmicBrowse: a browser of multidimensional omics annotations

Tetsuro Toyoda; Yoshiki Mochizuki; Keith Player; Norio Kobayashi Naohiko Heida; Yoshiyuki Sakaki

UNLABELLED OmicBrowse is a browser to explore multiple datasets coordinated in the multidimensional omic space integrating omics knowledge ranging from genomes to phenomes and connecting evolutional correspondences among multiple species. OmicBrowse integrates multiple data servers into a single omic space through secure peer-to-peer server communications, so that a user can easily obtain an integrated view of distributed data servers, e.g. an integrated view of numerous whole-genome tiling-array data retrieved from a users in-house private-data server, along with various genomic annotations from public internet servers. OmicBrowse is especially appropriate for positional-cloning purposes. It displays both genetic maps and genomic annotations within wide chromosomal intervals and assists a user to select candidate genes by filtering their annotations or associated documents against user-specified keywords or ontology terms. We also show that an omic-space chart effectively represents schemes for integrating multiple datasets of multiple species. AVAILABILITY OmicBrowse is developed by the Genome-Phenome Superbrain Project and is released as free open-source software under the GNU General Public License at http://omicspace.riken.jp.


Bioinformatics | 2003

GSCope: a clipped fisheye viewer effective for highly complicated biomolecular network graphs

Tetsuro Toyoda; Yoshiki Mochizuki; Akihiko Konagaya

UNLABELLED A graphical tool to visualize highly complicated biomolecular network graphs is described. It helps us to understand the graphs from macroscopic and microscopic viewpoints by incorporating continuous transition from global to clipped hyperbolic projection. GSCope also helps us to find a molecule in the graphs by offering several searching functions. It is useful to publish biomolecular network graphs on the internet. AVAILABILITY GSCope is available at http://gscope.gsc.riken.go.jp.


Plant and Cell Physiology | 2009

Transcriptome Analyses Revealed Diverse Expression Changes in ago1 and hyl1 Arabidopsis Mutants

Yukio Kurihara; Eli Kaminuma; Akihiro Matsui; Makiko Kawashima; Maho Tanaka; Taeko Morosawa; Junko Ishida; Yoshiki Mochizuki; Kazuo Shinozaki; Tetsuro Toyoda; Motoaki Seki

MicroRNAs (miRNAs) are 20-24 nucleotide endogenous regulatory molecules conserved in higher eukaryotes. In Arabidopsis, miRNAs are produced through step-wise cleavages of primary miRNA precursors (pri-miRNAs) by DICER-LIKE1 (DCL1). This cleavage step is also supported by a double-stranded RNA-binding protein, HYPONASTIC LEAVES1 (HYL1). In many cases, mature miRNA is predominantly incorporated into an endonuclease, ARGONAUTE1 (AGO1), which degrades miRNA-targeted mRNAs. Here, we examined and revealed whole genome transcriptomes in ago1-25 and hyl1-2 mutants using tiling arrays. The data in this paper are valuable for understanding the relationship between the miRNA pathway and its effect on transcriptomes.


Plant and Cell Physiology | 2009

PosMed-plus: an intelligent search engine that inferentially integrates cross-species information resources for molecular breeding of plants.

Yuko Makita; Norio Kobayashi; Yoshiki Mochizuki; Yuko Yoshida; Satomi Asano; Naohiko Heida; Mrinalini Deshpande; Rinki Bhatia; Akihiro Matsushima; Manabu Ishii; Shuji Kawaguchi; Kei Iida; Kosuke Hanada; Takashi Kuromori; Motoaki Seki; Kazuo Shinozaki; Tetsuro Toyoda

Molecular breeding of crops is an efficient way to upgrade plant functions useful to mankind. A key step is forward genetics or positional cloning to identify the genes that confer useful functions. In order to accelerate the whole research process, we have developed an integrated database system powered by an intelligent data-retrieval engine termed PosMed-plus (Positional Medline for plant upgrading science), allowing us to prioritize highly promising candidate genes in a given chromosomal interval(s) of Arabidopsis thaliana and rice, Oryza sativa. By inferentially integrating cross-species information resources including genomes, transcriptomes, proteomes, localizomes, phenomes and literature, the system compares a users query, such as phenotypic or functional keywords, with the literature associated with the relevant genes located within the interval. By utilizing orthologous and paralogous correspondences, PosMed-plus efficiently integrates cross-species information to facilitate the ranking of rice candidate genes based on evidence from other model species such as Arabidopsis. PosMed-plus is a plant science version of the PosMed system widely used by mammalian researchers, and provides both a powerful integrative search function and a rich integrative display of the integrated databases. PosMed-plus is the first cross-species integrated database that inferentially prioritizes candidate genes for forward genetics approaches in plant science, and will be expanded for wider use in plant upgrading in many species.

Collaboration


Dive into the Yoshiki Mochizuki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Norio Kobayashi

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar

Akihiro Matsushima

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manabu Ishii

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar

Motoaki Seki

Kihara Institute for Biological Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuko Yoshida

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar

Eli Kaminuma

National Institute of Genetics

View shared research outputs
Researchain Logo
Decentralizing Knowledge