Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoshiko Kikuchi is active.

Publication


Featured researches published by Yoshiko Kikuchi.


The EMBO Journal | 2009

Lysine 63‐linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome

Yasushi Saeki; Tai Kudo; Takayuki Sone; Yoshiko Kikuchi; Hideyoshi Yokosawa; Akio Toh-e; Keiji Tanaka

Recruitment of substrates to the 26S proteasome usually requires covalent attachment of the Lys48‐linked polyubiquitin chain. In contrast, modifications with the Lys63‐linked polyubiquitin chain and/or monomeric ubiquitin are generally thought to function in proteasome‐independent cellular processes. Nevertheless, the ubiquitin chain‐type specificity for the proteasomal targeting is still poorly understood, especially in vivo. Using mass spectrometry, we found that Rsp5, a ubiquitin‐ligase in budding yeast, catalyzes the formation of Lys63‐linked ubiquitin chains in vitro. Interestingly, the 26S proteasome degraded well the Lys63‐linked ubiquitinated substrate in vitro. To examine whether Lys63‐linked ubiquitination serves in degradation in vivo, we investigated the ubiquitination of Mga2‐p120, a substrate of Rsp5. The polyubiquitinated p120 contained relatively high levels of Lys63‐linkages, and the Lys63‐linked chains were sufficient for the proteasome‐binding and subsequent p120‐processing. In addition, Lys63‐linked chains as well as Lys48‐linked chains were detected in the 26S proteasome‐bound polyubiquitinated proteins. These results raise the possibility that Lys63‐linked ubiquitin chain also serves as a targeting signal for the 26S proteaseome in vivo.


Journal of Biological Chemistry | 2003

Translation termination factor eRF3 mediates mRNA decay through the regulation of deadenylation

Nao Hosoda; Tetsuo Kobayashi; Naoyuki Uchida; Yuji Funakoshi; Yoshiko Kikuchi; Shin-ichi Hoshino; Toshiaki Katada

Messenger RNA decay, which is a regulated process intimately linked to translation, begins with the deadenylation of the poly(A) tail at the 3′ end. However, the precise mechanism triggering the first step of mRNA decay and its relationship to translation have not been elucidated. Here, we show that the translation termination factor eRF3 mediates mRNA deadenylation and decay in the yeast Saccharomyces cerevisiae. The N-domain of eRF3, which is not necessarily required for translation termination, interacts with the poly(A)-binding protein PABP. When this interaction is blocked by means of deletion or overexpression of the N-domain of eRF3, half-lives of all mRNAs are prolonged. The eRF3 mutant lacking the N-domain is deficient in the poly(A) shortening. Furthermore, the eRF3-mediated mRNA decay requires translation to proceed, especially ribosomal transition through the termination codon. These results indicate that the N-domain of eRF3 mediates mRNA decay by regulating deadenylation in a manner coupled to translation.


Gene | 2001

A novel factor required for the SUMO1/Smt3 conjugation of yeast septins

Yoshimitsu Takahashi; Akio Toh-e; Yoshiko Kikuchi

SUMO1/Smt3, a ubiquitin-like protein modifier, is known to be conjugated to other proteins and modulate their functions in various important processes. Similar to the ubiquitin system, SUMO1/Smt3 is activated in an ATP-dependent reaction by thioester bond formation with E1 (activating enzyme), transferred to E2 (conjugating enzyme), and passed to a substrate lysine. It remained unknown, however, whether any SUMO1/Smt3 ligases (E3s) are involved in the final transfer of this modifier. Here we report a novel factor Siz1 (YDR409w) required for septin-sumoylation of budding yeast, possibly acting as E3. Siz1 is a member of a new family (Miz1, PIAS3, etc.) containing a conserved domain with a similarity to a zinc-binding RING-domain, often found in ubiquitin ligases. In the siz1 mutant septin-sumoylation was completely abolished. A conserved cysteine residue in the domain was essential for this conjugation. Furthermore, Siz1 was localized at the mother-bud neck in the M-phase and physically bound to both E2 and the target proteins.


Molecular and Cellular Biology | 1996

Bul1, a new protein that binds to the Rsp5 ubiquitin ligase in Saccharomyces cerevisiae.

Hideki Yashiroda; Tomoko Oguchi; Yuko Yasuda; Akio Toh-e; Yoshiko Kikuchi

We characterized a temperature-sensitive mutant of Saccharomyces cerevisiae in which a mini-chromosome was unstable at a high temperature and cloned a new gene which encodes a basic and hydrophilic protein (110 kDa). The disruption of this gene caused the same temperature-sensitive growth as the original mutation. By using the two-hybrid system, we further isolated RSP5 (reverses Spt- phenotype), which encodes a hect (homologous to E6-AP C terminus) domain, as a gene encoding a ubiquitin ligase. Thus, we named our gene BUL1 (for a protein that binds to the ubiquitin ligase). BUL1 seems to be involved in the ubiquitination pathway, since a high dose of UBI1, encoding a ubiquitin, partially suppressed the temperature sensitivity of the bul1 disruptant as well as that of a rsp5 mutant. Coexpression of RSP5 and BUL1 on a multicopy plasmid was toxic for mitotic growth of the wild-type cells. Pulse-chase experiments revealed that Bul1 in the wild-type cells remained stable, while the bands of Bul1 in the rsp5 cells were hardly detected. Since the steady-state levels of the protein were the same in the two strains as determined by immunoblotting analysis, Bul1 might be easily degraded during immunoprecipitation in the absence of intact Rsp5. Furthermore, both Bul1 and Rsp5 appeared to be associated with large complexes which were separated through a sucrose gradient centrifugation, and Rsp5 was coimmunoprecipitated with Bul1. We discuss the possibility that Bul1 functions together with Rsp5 in protein ubiquitination.


The EMBO Journal | 1989

A human homologue of the yeast GST1 gene codes for a GTP-binding protein and is expressed in a proliferation-dependent manner in mammalian cells.

Shin-ichi Hoshino; H. Miyazawa; T. Enomoto; Fumio Hanaoka; Yoshiko Kikuchi; A. Kikuchi; Michio Ui

A human homologue (GST1‐Hs) of the yeast GST1 gene that encodes a new GTP‐binding protein essential for the G1‐to‐S phase transition of the cell cycle was cloned from the cDNA library of human KB cells. The GST1‐Hs cDNA contained a 1497 bp open reading frame coding for a 499 amino acid protein with mol. wt 55,754 and with the amino acid sequence homologies of 52.3 and 37.8% to the GST1 protein and polypeptide chain elongation factor EF1 alpha respectively. The regions potentially responsible for GTP binding and GTP hydrolysis were conserved in the GST1‐Hs protein as well. When expressed in yeast cell, the GST1‐Hs gene could complement the ts phenotype of yeast gst1 mutant. GST1‐Hs and its mouse homologue were expressed in human fibroblasts and in various mouse cell types respectively, at relatively low levels in their quiescent states, and the level of those expressions increased rapidly, prior to the onset of DNA replication and the total RNA synthesis, when human or mouse fibroblasts were progressed out of the growth‐arrested state by the addition of serum. A possible role of GST1‐Hs in mammalian cell growth is discussed.


Journal of Biological Chemistry | 1998

Molecular cloning of a novel member of the eukaryotic polypeptide chain-releasing factors (eRF)-Its identification as eRF3 interacting with eRF1

Shin-ichi Hoshino; Mariko Imai; Mirai Mizutani; Yoshiko Kikuchi; Fumio Hanaoka; Michio Ui; Toshiaki Katada

Yeast GST1 gene, whose product is a GTP-binding protein structurally related to polypeptide chain elongation factor-1α (EF1α), was first described to be essential for the G 1 to S phasetransition (GSPT) of the cell cycle, and the product was recently reported to function as a polypeptide chain release factor 3 (eRF3) in yeast. Although we previously cloned a human homologue (renamed as GSPT1) of the yeast gene, it has remained to be determined whether GSPT1 also functions as eRF3 or if another GSPT may have such a function in mammalian cells. In the present study, we isolated two mouse GSPT genes, the counterpart of human GSPT1 and a novel member of the GSPT gene family, GSPT2. Both the mouse GSPTs had a two-domain structure characterized as an amino-terminal no-homologous region (approximately 200 amino acids) and a carboxyl-terminal conserved eukaryotic elongation factor-1α-like domain (428 amino acids). Messenger RNAs of the two GSPTs could be detected in all mouse tissues surveyed, although the level of GSPT2 message appeared to be relatively abundant in the brain. The mouse GSPT1 was expressed in a proliferation-dependent manner in Swiss 3T3 cells, whereas the expression of GSPT2 was constant during the cell-cycle progression. Immunoprecipitation assays in COS-7 cells expressing flag epitope-tagged proteins demonstrated that not only GSPT1 but also GSPT2 was capable of interacting with eRF1. Such interaction between GSPT2 and eRF1 was also confirmed by yeast two-hybrid analysis. Taken together, these data indicated that the novel GSPT2 may interact with eRF1 to function as eRF3 in mammalian cells.


Journal of Biological Chemistry | 1997

Ssd1p of Saccharomyces cerevisiae Associates with RNA

Yukifumi Uesono; Akio Toh-e; Yoshiko Kikuchi

The SSD1 gene has been isolated as a single copy suppressor of many mutants, such as sit4,slk1/bck1, pde2, and rpc31, in the yeast Saccharomyces cerevisiae. Ssd1p has domains showing weak but significant homology with RNase II-related proteins, Cyt4p, Dss1p, VacB, and RNase II, which are involved in the modification of RNA. We found that Ssd1p had the ability to bind RNA, preferably poly(rA), as well as single-stranded DNA. Interestingly, the most conserved domain among the RNase II-related proteins was not necessary for interaction with RNA. Indirect immunofluorescence staining with anti-Ssd1p antibody revealed that Ssd1p was detected mainly in the cytoplasm. Furthermore, sucrose gradient sedimentation analysis demonstrated that Ssd1p was not cofractionated with polyribosomes, suggesting that Ssd1p is not particularly bound to a translationally active subpopulation of mRNA in the cytoplasm.


Molecular Genetics and Genomics | 1992

Isolation and characterization of cDNA clones encodingcdc2 homologues fromOryza sativa: a functional homologue and cognate variants

Junji Hashimoto; Toshio Hirabayashi; Yuriko Hayano; Shingo Hata; Yuko Ohashi; Iwao Suzuka; Takahiko Utsugi; Akio Toh-e; Yoshiko Kikuchi

SummaryUsing probes obtained by PCR amplification, we have isolated two cognate rice cDNAs (cdc2Os-1 andcdc2Os-2) encoding structural homologues of thecdc2+/CDC28(cdc2) protein kinase from a cDNA library prepared from cultured rice cells. Comparison of the deduced amino acid sequences of cdc2Os-1 and cdc2Os-2 showed that they are 83 % identical. They are 62 % identical toCDC28 ofSaccharomyces cerevisiae and much more similar to the yeast and mammalian p34cdc2 kinases than to riceR2, acdc2-related kinase isolated previously by screening the same rice cDNA library with a different oligonucleotide probe. Southern blot analysis indicated that the three rice clones (cdc2Os-1,cdc2Os-2 andR2) are derived from distinct genes and are each found in a single copy per rice haploid genome. RNA blot analysis revealed that these genes are expressed in proliferating rice cells and in young rice seedlings.cdc2Os-1 could complement a temperature-sensitive yeast mutant ofcdc28. However, despite the similarity in structure, bothcdc2Os-2 andR2 were unable to complement the same mutant. Thus, the present results demonstrate the presence of structurally related, but functionally distinct cognates of thecdc2 cell cycle kinase in rice.


Genetics | 2005

SIZ1/SIZ2 Control of Chromosome Transmission Fidelity Is Mediated by the Sumoylation of Topoisomerase II

Yoshimitsu Takahashi; Vladimir Yong-Gonzalez; Yoshiko Kikuchi; Alexander Strunnikov

The Smt3 (SUMO) protein is conjugated to substrate proteins through a cascade of E1, E2, and E3 enzymes. In budding yeast, the E3 step in sumoylation is largely controlled by Siz1p and Siz2p. Analysis of Siz− cells shows that SUMO E3 is required for minichromosome segregation and thus has a positive role in maintaining the fidelity of mitotic transmission of genetic information. Sumoylation of the carboxy-terminus of Top2p, a known SUMO target, is mediated by Siz1p and Siz2p both in vivo and in vitro. Sumoylation in vitro reveals that Top2p is an extremely potent substrate for Smt3p conjugation and that chromatin-bound Top2p can still be sumoylated, unlike many other SUMO substrates. By combining mutations in the TOP2 sumoylation sites and the SIZ1 and SIZ2 genes we demonstrate that the minichromosome segregation defect and dicentric minichromosome stabilization, both characteristic for Smt3p–E3-deficient cells, are mediated by the lack of Top2p sumoylation in these cells. A role for Smt3p-modification as a signal for Top2p targeting to pericentromeric regions was suggested by an analysis of Top2p–Smt3p fusion. We propose a model for the positive control of the centromeric pool of Top2p, required for high segregation fidelity, by Smt3p modification.


Molecular and Cellular Biology | 2000

Yeast Krr1p physically and functionally interacts with a novel essential Kri1p, and both proteins are required for 40S ribosome biogenesis in the nucleolus.

Takeshi Sasaki; Akio Toh-e; Yoshiko Kikuchi

ABSTRACT Using a two-hybrid screening with TOM1, a putative ubiquitin-ligase gene of Saccharomyces cerevisiae, we isolated KRR1, a homologue of human HRB2 (for human immunodeficiency virus type 1 Rev-binding protein 2). To characterize the gene function, we constructed temperature-sensitivekrr1 mutants and isolated two multicopy suppressors. One suppressor is RPS14A, encoding a 40S ribosomal protein. The C-terminal-truncated rpS14p, which was reported to have diminished binding activity to 18S rRNA, failed to suppress the krr1mutant. The other suppressor is a novel gene, KRI1 (for KRR1 interacting protein; YNL308c). KRI1 is essential for viability, and Kri1p is localized to the nucleolus. We constructed a galactose-dependent kri1 strain by placing KRI1under control of the GAL1 promoter, so that expression ofKRI1 was shut off when transferring the culture to glucose medium. Polysome and 40S ribosome fractions were severely decreased in the krr1 mutant and Kri1p-depleted cells. Pulse-chase analysis of newly synthesized rRNAs demonstrated that 18S rRNA is not produced in either mutant. However, wild-type levels of 25S rRNA are made in either mutant. Northern analysis revealed that the steady-state levels of 18S rRNA and 20S pre-rRNAs were reduced in both mutants. Precursors for 18S rRNA were detected but probably very unstable in both mutants. A myc-tagged Kri1p coimmunoprecipitated with a hemagglutinin-tagged Krr1p. Furthermore, the krr1 mutant protein was defective in its interaction with Kri1p. These data lead us to conclude that Krr1p physically and functionally interacts with Kri1p to form a complex which is required for 40S ribosome biogenesis in the nucleolus.

Collaboration


Dive into the Yoshiko Kikuchi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoshimitsu Takahashi

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander Strunnikov

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge