Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoshiko Uesugi is active.

Publication


Featured researches published by Yoshiko Uesugi.


Journal of Controlled Release | 2010

An ultrasound-responsive nano delivery system of tissue-type plasminogen activator for thrombolytic therapy

Yoshiko Uesugi; Hiroyuki Kawata; Jun-ichiro Jo; Yoshihiko Saito; Yasuhiko Tabata

This study is undertaken to design a novel nano-sized delivery system of tissue-type plasminogen activator (t-PA) which has a suppressed thrombolytic activity of t-PA, but recovered the activity only when exposed to ultrasound. Various amounts of ethylenediamine were chemically introduced into gelatin (cationized gelatins) to complex with t-PA. To modify the surface of complexes with polyethylene glycol (PEG), PEG was chemically grafted to the anionic gelatin (PEG-gelatin). The simple mixing with the PEG-gelatin enabled the t-PA-cationized gelatin complex to form a nano-sized delivery complex with PEG chains on the surface. The t-PA activity of PEG-modified complexes was significantly suppressed to be 45% of original t-PA. However, when exposed to ultrasound in vitro, the t-PA activity was fully recovered. A cell culture experiment demonstrated no cytotoxicity of PEG-modified complexes. The body distribution study indicated that the half-life of t-PA in the blood circulation was prolonged about 3 times. In a rabbit thrombosis model, the intravenous administration of PEG-modified complexes followed by ultrasound irradiation resulted in complete recanalization, in remarked contrast to the complex administration alone. It is concluded that the PEG-modified complex is a promising t-PA delivery system to enhance the biological activity at the site necessary only by a local ultrasound irradiation.


Applied Microbiology and Biotechnology | 2006

Study on peptide hydrolysis by aminopeptidases from Streptomyces griseus, Streptomyces septatus and Aeromonas proteolytica.

Jiro Arima; Yoshiko Uesugi; Masaki Iwabuchi; Tadashi Hatanaka

We developed a spectrophotometric assay for peptide hydrolysis by aminopeptidases (APs). The assay enables the measurement of free amino acids liberated by AP-catalyzed peptide hydrolysis using 4-aminoantipyrine, phenol, peroxidase, and l-amino acid oxidase. We investigated the specificity of bacterial APs [enzymes from Streptomyces griseus (SGAP), Streptomyces septatus (SSAP), and Aeromonas proteolytica (AAP)] toward peptide substrates using this assay method. Although these enzymes most efficiently cleave leucyl derivatives among 20 aminoacyl derivatives, in peptide hydrolysis, the catalytic efficiencies of Phe-Phe hydrolysis by SGAP and SSAP exceed that of Leu-Phe hydrolysis. Furthermore, all enzymes showed the maximum catalytic efficiencies for Phe-Phe-Phe hydrolysis. These results indicate that the hydrolytic activities of bacterial APs are affected by the nature of the penultimate residue or flanking moiety and the length of the peptide substrate.


Protein Expression and Purification | 2008

pTONA5: A hyperexpression vector in streptomycetes

Tadashi Hatanaka; Hiroyasu Onaka; Jiro Arima; Misugi Uraji; Yoshiko Uesugi; Hirokazu Usuki; Yukifumi Nishimoto; Masaki Iwabuchi

We constructed the Streptomyces hyperexpression vector pTONA5 based on pIJ702 vector; it includes a metalloendopeptidase (SSMP) promoter isolated from Streptomyces cinnamoneus TH-2 and a metalloendopeptidase terminator isolated from Streptomyces aureofaciens TH-3. The vector contains recognition sites for restriction enzymes NdeI and EcoRI/XbaI/HindIII between the promoter and terminator to facilitate heterologous gene cloning. The plasmids were transferred from Escherichia coli to streptomycetes via conjugation from oriT; the transformants were able to be selected using kanamycin and/or thiostrepton. The SSMP promoter functions constitutively in the presence of a rich inorganic phosphate source and glucose. We constructed expression plasmids including three Streptomyces aminopeptidases-leucine aminopeptidase, proline aminopeptidase (PAP), and aminopeptidase P (APP)-using the pTONA5 vector and Streptomyces lividans. Although they lack signal peptides for secretion, PAP and APP were secreted at high levels in the culture broth.


Biochimica et Biophysica Acta | 2009

Phospholipase D mechanism using Streptomyces PLD.

Yoshiko Uesugi; Tadashi Hatanaka

Phospholipase D (PLD) plays various roles in important biological processes and physiological functions, including cell signaling. Streptomyces PLDs show significant sequence similarity and belong to the PLD superfamily containing two catalytic HKD motifs. These PLDs have conserved catalytic regions and are among the smallest PLD enzymes. Therefore, Streptomyces PLDs are thought to be suitable models for studying the reaction mechanism among PLDs from other sources. Furthermore, Streptomyces PLDs present advantages related to their broad substrate specificity and ease of enzyme preparation. Moreover, the tertiary structure of PLD has been elucidated only for PLD from Streptomyces sp. PMF. This article presents a review of recently reported studies of the mechanism of the catalytic reaction, substrate recognition, substrate specificity and stability of Streptomyces PLD using various protein engineering methods and surface plasmon resonance analysis.


Applied and Environmental Microbiology | 2006

Dipeptide Synthesis by an Aminopeptidase from Streptomyces septatus TH-2 and Its Application to Synthesis of Biologically Active Peptides

Jiro Arima; Yoshiko Uesugi; Misugi Uraji; Masaki Iwabuchi; Tadashi Hatanaka

ABSTRACT Dipeptide synthesis by aminopeptidase from Streptomyces septatus TH-2 (SSAP) was demonstrated using free amino acid as an acyl donor and aminoacyl methyl ester as an acyl acceptor in 98% methanol (MeOH). SSAP retained its activity after more than 100 h in 98% MeOH, and in the case of phenylalanyl-phenylalanine methyl ester synthesis, the enzyme reaction reached equilibrium when more than 50% of the free phenylalanine was converted to the product. In an investigation of the specificity of SSAP toward acyl donors and acyl acceptors, SSAP showed a broad specificity toward various free amino acids and aminoacyl methyl esters. Furthermore, we applied SSAP to the synthesis of several biologically active peptides, such as aspartyl-phenylalanine, alanyl-tyrosine, and valyl-tyrosine methyl esters.


Enzyme and Microbial Technology | 2011

Highly potent fibrinolytic serine protease from Streptomyces.

Yoshiko Uesugi; Hirokazu Usuki; Masaki Iwabuchi; Tadashi Hatanaka

We introduce a highly potent fibrinolytic serine protease from Streptomyces omiyaensis (SOT), which belongs to the trypsin family. The fibrinolytic activity of SOT was examined using in vitro assays and was compared with those of known fibrinolytic enzymes such as plasmin, tissue-type plasminogen activator (t-PA), urokinase, and nattokinase. Compared to other enzymes, SOT showed remarkably higher hydrolytic activity toward mimic peptides of fibrin and plasminogen. The fibrinolytic activity of SOT is about 18-fold higher than that of plasmin, and is comparable to that of t-PA by fibrin plate assays. Furthermore, SOT had some plasminogen activator-like activity. Results show that SOT and nattokinase have very different fibrinolytic and fibrinogenolytic modes, engendering significant synergetic effects of SOT and nattokinase on fibrinolysis. These results suggest that SOT presents important possibilities for application in the therapy of thrombosis.


Journal of Biological Chemistry | 2006

Modulation of Streptomyces Leucine Aminopeptidase by Calcium IDENTIFICATION AND FUNCTIONAL ANALYSIS OF KEY RESIDUES IN ACTIVATION AND STABILIZATION BY CALCIUM

Jiro Arima; Yoshiko Uesugi; Misugi Uraji; Shouki Yatsushiro; Seiji Tsuboi; Masaki Iwabuchi; Tadashi Hatanaka

Streptomyces griseus leucine aminopeptidase (SGAP), which has two zinc atoms in its active site, is clinically important as a model for understanding the structure and mechanism of action of other metallopeptidases. SGAP is a calcium-activated and calcium-stabilized enzyme, and its activation by calcium correlates with substrate specificity. In our previous study, we found a non-calcium-modulated leucine aminopeptidase secreted by Streptomyces septatus, the primary structure of which showed 71% identity with SGAP. In this study, we constructed chimeras of SGAP and S. septatus aminopeptidase by using an in vivo DNA shuffling system and several mutant enzymes by site-directed mutagenesis to identify the key residues in this modulation by calcium. We identified the key residues Asp-173 and Asp-174 of SGAP associated with both SGAP activation and stabilization by calcium. We also showed that the known calcium-binding site, which is composed of Asp-3, Ile-4, Asp-262, and Asp-266 of SGAP, only contributes to SGAP stabilization by calcium. Furthermore, we identified an important residue, Glu-196, that functions in cooperation with Asp-173, Asp-174, and calcium to increase the catalytic activity of SGAP.


Journal of the American College of Cardiology | 2012

A New Drug Delivery System for Intravenous Coronary Thrombolysis With Thrombus Targeting and Stealth Activity Recoverable by Ultrasound

Hiroyuki Kawata; Yoshiko Uesugi; Tsunenari Soeda; Yasuhiro Takemoto; Ji-Hee Sung; Kiyotaka Umaki; Keiji Kato; Kenichi Ogiwara; Keiji Nogami; Kenichi Ishigami; Manabu Horii; Shiro Uemura; Midori Shima; Yasuhiko Tabata; Yoshihiko Saito

OBJECTIVES The purpose of this study was to develop a new intelligent drug delivery system for intracoronary thrombolysis with a strong thrombolytic effect without increasing bleeding risk. BACKGROUND Rapid recanalization of an occluded coronary artery is essential for better outcomes in acute myocardial infarction. Catheter-based recanalization is widely accepted, but it takes time to transport patients. Although the current fibrinolytic therapy can be started quickly, it cannot achieve a high reperfusion rate. Recently, we generated nanoparticles comprising tissue-type plasminogen activator (tPA), basic gelatin, and zinc ions, which suppress tPA activity by 50% with 100% recovery by ultrasound (US) in vitro. METHODS The thrombus-targeting property of nanoparticles was examined by an in vitro binding assay with von Wilbrand factor and with a mouse arterial thrombosis model in vivo. The thrombolytic efficacy of nanoparticles was evaluated with a swine acute myocardial infarction model. RESULTS Nanoparticles bound to von Wilbrand factor in vitro and preferentially accumulated at the site of thrombus in a mouse model. In a swine acute myocardial infarction model, plasma tPA activity after intravenous injection of nanoparticles was approximately 25% of tPA alone and was recovered completely by transthoracic US (1.0 MHz, 1.0 W/cm(2)). During US application, plasma tPA activity near the affected coronary artery was recovered and was higher than that near the femoral artery. Although treatment with tPA alone (55,000 IU/kg) recanalized the occluded coronary artery in only 1 of 10 swine, nanoparticles containing the same dose of tPA with US achieved recanalization in 9 of 10 swine within 30 min. CONCLUSIONS We developed an intelligent drug delivery system with promising potential for better intravenous coronary thrombolysis.


Journal of Drug Targeting | 2012

Ultrasound-responsive thrombus treatment with zinc-stabilized gelatin nano-complexes of tissue-type plasminogen activator.

Yoshiko Uesugi; Hiroyuki Kawata; Yoshihiko Saito; Yasuhiko Tabata

This study is undertaken to design zinc-stabilized gelatin nano-complexes of tissue-type plasminogen activator (t-PA) for thrombolytic therapy where the t-PA activity can be recovered in the blood circulation upon ultrasound irradiation. Various molecular weights of gelatin were complexed with t-PA by their simply mixing in aqueous solution. Then, zinc acetate, calcium acetate or magnesium acetate was added to form nano-sized gelatin−t-PA complexes. The complexes had the apparent molecular size of about 100 nm. When zinc ions were added to the gelatin−t-PA complexes, the t-PA activity was suppressed most strongly to 57% of the original, free t-PA activity. Upon ultrasound exposure in vitro, the t-PA activity was fully recovered. A cell culture experiment with L929 fibroblasts demonstrated no cytotoxicity of complexes at the concentration used for the in vivo experiment. The half-life of t-PA in the blood circulation prolonged by the complexation with gelatin and zinc ions. The zinc-stabilized t-PA−gelatin complex is a promising t-PA delivery system which can manipulate the thrombolytic activity by the local ultrasound irradiation.


Applied and Environmental Microbiology | 2005

Alteration of Leucine Aminopeptidase from Streptomyces septatus TH-2 to Phenylalanine Aminopeptidase by Site-Directed Mutagenesis

Jiro Arima; Yoshiko Uesugi; Masaki Iwabuchi; Tadashi Hatanaka

ABSTRACT To tailor leucine aminopeptidase from Streptomyces septatus TH-2 (SSAP) to become a convenient biocatalyst, we are interested in Phe221 of SSAP, which is thought to interact with the side chain of the N-terminal residue of the substrate. By using saturation mutagenesis, the feasibility of altering the performance of SSAP was evaluated. The hydrolytic activities of 19 mutants were investigated using aminoacyl p-nitroanilide (pNA) derivatives as substrates. Replacement of Phe221 resulted in changes in the activities of all the mutants. Three of these mutants, F221G, F221A, and F221S, specifically hydrolyzed l-Phe-pNA, and F221I SSAP exhibited hydrolytic activity with l-Leu-pNA exceeding that of the wild type. Although the hydrolytic activities with peptide substrates decreased, the hydrolytic activities with amide and methyl ester substrates were proportional to the changes in the hydrolytic activities with pNA derivatives. Furthermore, based on a comparative kinetic study, the mechanism underlying the alteration in the preference of SSAP from leucine to phenylalanine is discussed.

Collaboration


Dive into the Yoshiko Uesugi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hirokazu Usuki

Japan Society for the Promotion of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shiro Uemura

Nara Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge