Yoshikuni Nagamine
Friedrich Miescher Institute for Biomedical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yoshikuni Nagamine.
Gene | 1984
G. Churchward; Dominique Belin; Yoshikuni Nagamine
We have constructed a plasmid cloning vector, pGB2, which is derived from the Escherichia coli plasmid pSC101. The plasmid, which specifies resistance to spectinomycin and streptomycin, contains unique restriction sites for the enzymes HindIII, PstI, SalI, BamHI, SmaI and EcoRI. pGB2 shows no sequence homology, as detected by DNA-DNA hybridization, to several widely used vectors such as pBR322, pUC8 and phage lambda L47.1. Amongst other applications, DNA fragments can be cloned into the plasmid and then radioactive plasmid DNA can be used as a probe to screen recombinant DNA libraries.
Journal of Biological Chemistry | 1998
Said Hashemolhosseini; Yoshikuni Nagamine; Simon J. Morley; Sylvane Desrivières; Luka Mercep; Stefano Ferrari
The immunosuppressant rapamycin has been shown previously to inhibit the G1/S transition in several cell types by prolonging the G1 phase of the cell cycle. This process appears to be controlled, in part, by the rapamycin-sensitive FK506-binding protein-rapamycin-associated protein-p70 S6 kinase (p70S6k) pathway and the cyclin-dependent kinases (Cdk). We now show that in serum-stimulated NIH 3T3 cells, rapamycin treatment delays the accumulation of cyclin D1 mRNA during progression through G1. Rapamycin also appears to affect stability of the transcript. The combined transcriptional and post-transcriptional effects of the drug ultimately result in decreased levels of cyclin D1 protein. Moreover, degradation of newly synthesized cyclin D1 protein is accelerated by rapamycin, a process prevented by inclusion of the proteasome inhibitor, N-acetyl-Leu-Leu-norleucinal. The overall effect of rapamycin on cyclin D1 leads, in turn, to impaired formation of active complexes with Cdk4, a process which triggers retargeting of the p27Kip1 inhibitor to cyclin E/Cdk2. In view of this novel experimental evidence, we discuss a possible mechanism for the rapamycin-induced cell cycle arrest at the G1/S transition.
Molecular and Cellular Biology | 2003
Hoanh Tran; Fabienne Maurer; Yoshikuni Nagamine
ABSTRACT The mRNAs of urokinase plasminogen activator (uPA) and its receptor, uPAR, contain instability-determining AU-rich elements (AREs) in their 3′ untranslated regions. The cellular proteins binding to these RNA sequences (AREuPA/uPAR) are not known. We show here that the mRNA-stabilizing factor HuR functionally interacts with these sequences. HuR stabilized an AREuPA-containing RNA substrate in vitro and stabilized in HeLa Tet-off cells both endogenous uPA and uPAR mRNAs and a β-globin reporter mRNA containing the AREuPA. RNAi-mediated depletion of HuR in BT-549 and MDA-MB-231 cells significantly reduced the steady-state levels of endogenous uPA and uPAR mRNAs. Furthermore, we show that a constitutively active form of mitogen-activated protein kinase-activated protein kinase 2 (MK2), MK2-EE, has an ARE-mRNA-stabilizing effect that correlates with its ability to enhance the cytoplasmic accumulation of endogenous HuR, but not in cells cotransfected with a dominant negative version of MK2, MK2-K76R. These effects were mimicked by hydrogen peroxide treatment (oxidative stress), which resulted in the phosphorylation of endogenous MK2. In addition, hydrogen peroxide treatment enhanced the cytoplasmic binding of HuR to the AREuPA, which was abrogated in cells transfected with MK2-K76R. These results indicate a role for HuR and MK2 in regulating the expression of uPA and uPAR genes at the posttranscriptional level.
Biochemical Journal | 2002
Malgorzata Kisielow; Sandra Kleiner; Michiaki Nagasawa; Amir Faisal; Yoshikuni Nagamine
Many eukaryotic genes are expressed as multiple isoforms through the differential utilization of transcription/translation initiation sites or alternative splicing. The conventional approach for studying individual isoforms in a clean background (i.e. without the influence of other isoforms) has been to express them in cells or whole organisms in which the target gene has been deleted; this is time-consuming. Recently an efficient post-transcriptional gene-silencing method has been reported that employs a small interfering double-stranded RNA (siRNA). On the basis of this method we report a rapid alternative approach for isoform-specific gene expression. We show how the adaptor protein ShcA can be suppressed and expressed in an isoform-specific manner in a human cell line. ShcA exists in three isoforms, namely p66, p52 and p46, which differ only in their N-terminal regions and are derived from two different transcripts, namely p66 and p52/p46 mRNAs. An siRNA with a sequence shared by the two transcripts suppressed all of them. However, another siRNA whose sequence was present only in p66 mRNA suppressed only the p66 isoform, suggesting that the siRNA signal did not propagate to other regions of the target mRNA. The expression of individual isoforms was achieved by first down-regulating all isoforms by the common siRNA and then transfecting with an expression vector for each isoform that harboured silent mutations at the site corresponding to the siRNA. This allowed functional analysis of individual ShcA isoforms and may be more generally applicable for studying genes encoding multiple proteins.
Journal of Biological Chemistry | 2008
Steven D. Creacy; Eric D. Routh; Fumiko Iwamoto; Yoshikuni Nagamine; Steven A. Akman; James P. Vaughn
Quadruplex structures that result from stacking of guanine quartets in nucleic acids possess such thermodynamic stability that their resolution in vivo is likely to require specific recognition by specialized enzymes. We previously identified the major tetramolecular quadruplex DNA resolving activity in HeLa cell lysates as the gene product of DHX36 (Vaughn, J. P., Creacy, S. D., Routh, E. D., Joyner-Butt, C., Jenkins, G. S., Pauli, S., Nagamine, Y., and Akman, S. A. (2005) J. Biol Chem. 280, 38117–38120), naming the enzyme G4 Resolvase 1 (G4R1). G4R1 is also known as RHAU, an RNA helicase associated with the AU-rich sequence of mRNAs. We now show that G4R1/RHAU binds to and resolves tetramolecular RNA quadruplex as well as tetramolecular DNA quadruplex structures. The apparent Kd values of G4R1/RHAU for tetramolecular RNA quadruplex and tetramolecular DNA quadruplex were exceptionally low: 39 ± 6 and 77 ± 6pm, respectively, as measured by gel mobility shift assay. In competition studies tetramolecular RNA quadruplex structures inhibited tetramolecular DNA quadruplex structure resolution by G4R1/RHAU more efficiently than tetramolecular DNA quadruplex structures inhibited tetramolecular RNA quadruplex structure resolution. Down-regulation of G4R1/RHAU in HeLa T-REx cells by doxycycline-inducible short hairpin RNA caused an 8-fold loss of RNA and DNA tetramolecular quadruplex resolution, consistent with G4R1/RHAU representing the major tetramolecular quadruplex helicase activity for both RNA and DNA structures in HeLa cells. This study demonstrates for the first time the RNA quadruplex resolving enzymatic activity associated with G4R1/RHAU and its exceptional binding affinity, suggesting a potential novel role for G4R1/RHAU in targeting in vivo RNA quadruplex structures.
Journal of Biological Chemistry | 2005
James P. Vaughn; Steven D. Creacy; Eric D. Routh; Christi Joyner-Butt; G. Scott Jenkins; Sandra Pauli; Yoshikuni Nagamine; Steven A. Akman
G4-DNA is a highly stable alternative DNA structure that can form spontaneously in guanine-rich regions of single-stranded DNA under physiological conditions. Since a number of biological processes create such single-stranded regions, G4-DNA occurrence must be regulated. To date, resolution of tetramolecular G4-DNA into single strands (G4-resolvase activity) has been observed only in recombinant RecQ DNA helicases. We previously reported that human cell lysates possess tetramolecular G4-DNA resolving activity (Harrington, C., Lan, Y., and Akman, S. (1997) J. Biol Chem. 272, 24631–24636). Here we report the first complete purification of a major non-RecQ, NTP-dependent G4-DNA resolving enzyme from human cell lysates. This enzyme is identified as the DEXH helicase product of gene DHX36 (also known as RHAU). G4-DNA resolving activity was captured from HeLa cell lysates on G4-DNA affinity beads and further purified by gel filtration chromatography. The DHX36 gene product was identified by mass spectrometric sequencing of a tryptic digest from the protein band on SDS-PAGE associated with activity. DHX36 was cloned within a His6-tagging vector, expressed, and purified from Escherichia coli. Inhibition and substrate resolution assays showed that recombinant DHX36 protein displayed robust, highly specific G4-DNA resolving activity. Immunodepletion of HeLa lysates by a monoclonal antibody to the DHX36 product removed ca. 77% of the enzyme from lysates and reduced G4-DNA resolving activity to 46.0 ± 0.4% of control, demonstrating that DHX36 protein is responsible for the majority of tetramolecular G4-DNA resolvase activity.
Journal of Biological Chemistry | 1997
José Pedro Irigoyen; Daniel Besser; Yoshikuni Nagamine
Urokinase-type plasminogen activator (uPA) expression is induced upon cytoskeletal reorganization (CSR) by a mechanism independent of protein kinase C and cAMP protein kinase in nontransformed renal epithelial (LLC-PK1) cells. This CSR-dependent uPA gene activation is mediated by an AP-1-recognizing element located 2 kilobases upstream of the transcription initiation site. The phosphorylation of c-Jun, a component of AP-1, is induced by CSR, which seems to increase both the activity and stability of c-Jun (Lee, J. S., von der Ahe, D., Kiefer, B., and Nagamine, Y. (1993) Nucleic Acids Res. 21, 3365-3372). It has been shown that c-Jun is phosphorylated by members of the mitogen-activated protein kinase family, i.e. ERKs and JNKs. ERKs are activated through a growth factor-coupled Ras/Raf-dependent signaling pathway, while JNKs are activated through a stress-induced signaling pathway. Although CSR induces both ERK-2 and JNK activity, JNK does not seem to be involved in the uPA gene induction because UV irradiation, which activates JNK as efficiently as CSR, does not activate the uPA promoter. Further analysis showed the involvement of SOS, Ras, and Raf-1 in the pathway induced by CSR. Our results suggest that cells sense changes in cell morphology using the cytoskeleton as a sensor and respond by activating the ERK-involving signaling pathway from within the cell.
Gene | 1997
Daniel D'Orazio; Daniel Besser; René Marksitzer; Christina Kunz; David A. Hume; Birgitta Kiefer; Yoshikuni Nagamine
We have previously shown in NIH 3T3 fibroblasts that treatment with 12-O-tetradecanoylphorbol 13-acetate (TPA) or fibroblast growth factor-2 (FGF-2) activates the Ras/Erk signaling pathway in NIH 3T3 fibroblasts, leading to the induction of the urokinase-type plasminogen activator (uPA) gene. In this study, we characterize cis-acting elements involved in this induction. DNase I hypersensitive (HS) site analysis of the uPA promoter showed that two regions were enhanced after TPA and FGF-2 treatment. One was located 2.4kb upstream of the transcription start site (-2.4kb), where a known PEA3/AP1 (AGGAAATGAGGTCAT) element is located. The other was located in a previously undefined far upstream region. Sequencing of this region revealed a similar AP1/PEA3 (GTGATTCACTTCCT) element at -6.9 kb corresponding to the HS site. Deletion analysis of the uPA promoter in transient transfection assays showed that both PEA3/AP1 elements are required for full inducibility, suggesting a synergism between the two elements. When the two sites were inserted together upstream of a minimal promoter derived from the thymidine kinase gene, expression of the reporter gene was more strongly induced by TPA and FGF-2 than with either of the two elements alone. Alone, the -6.9 element was more potent than the -2.4 element. The involvement of AP1 as well as Ets transcription factors was confirmed by examining different promoter constructs containing deletions in either the AP-1 or the PEA3 element, and by using an expression plasmid for dominant negative Ets-2. Electromobility shift analyses using specific antibodies showed that c-Jun and, JunD bind to both elements with or without induction. In addition, ATF-2 binds to the -2.4-kb element even without induction and c-Fos to the -6.9-kb element only after induction. Accordingly, overexpression of c-Fos caused induction from the -6.9-kb element, but reduced induction from the -2.4-kb element. The involvement of the Ets-2 transcription factor was shown by using expression plasmids for wild-type and dominant negative Ets-2.
Nucleic Acids Research | 2010
Simon Lattmann; Banabihari Giri; James P. Vaughn; Steven A. Akman; Yoshikuni Nagamine
Under physiological conditions, guanine-rich sequences of DNA and RNA can adopt stable and atypical four-stranded helical structures called G-quadruplexes (G4). Such G4 structures have been shown to occur in vivo and to play a role in various processes such as transcription, translation and telomere maintenance. Owing to their high-thermodynamic stability, resolution of G4 structures in vivo requires specialized enzymes. RHAU is a human RNA helicase of the DEAH-box family that exhibits a unique ATP-dependent G4-resolvase activity with a high affinity and specificity for its substrate in vitro. How RHAU recognizes G4-RNAs has not yet been established. Here, we show that the amino-terminal region of RHAU is essential for RHAU to bind G4 structures and further identify within this region the evolutionary conserved RSM (RHAU-specific motif) domain as a major affinity and specificity determinant. G4-resolvase activity and strict RSM dependency are also observed with CG9323, the Drosophila orthologue of RHAU, in the amino terminal region of which the RSM is the only conserved motif. Thus, these results reveal a novel motif in RHAU protein that plays an important role in recognizing and resolving G4-RNA structures, properties unique to RHAU among many known RNA helicases.
Journal of Biological Chemistry | 1997
Mahmoud El-Shemerly; Daniel Besser; Michiaki Nagasawa; Yoshikuni Nagamine
We investigated the activation of the Ras/ERK signaling pathway by 12-O-tetradecanoylphorbol-13-acetate (TPA) in NIH3T3 fibroblasts. Interestingly, the activation was suppressed not only by dominant negative Raf-1 but also by dominant negative Ras and SOS. Further analysis revealed that TPA treatment induced, dependently on protein kinase C, the mobility shift of p66 shc in SDS-polyacrylamide gel electrophoresis, which could be prevented by treatment of the Shc immunoprecipitate with serine/threonine-specific protein phosphatase 1 (PP1) or 2A (PP2A). Phosphoamino acid analysis of Shc showed that unlike growth factor-induced Shc phosphorylation, where Shc is mainly phosphorylated at tyrosine residues, TPA-induced phosphorylation was only at serine residues. Like growth factor-induced Shc phosphorylation, which leads to the association of Shc with Grb2, TPA also induced this association, but, correspondingly to the above results, the TPA-induced association was disrupted by in vitro treatment of the Shc immunoprecipitate with PP1. Taken together, these results suggest that the TPA signal was fed at or upstream of Shc to activate the Ras/ERK signaling pathway involving serine phosphorylation of Shc.