Yoshikuni Onodera
Daiichi Sankyo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yoshikuni Onodera.
Nature | 2013
Ryosuke Nakashima; Keisuke Sakurai; Seiji Yamasaki; Katsuhiko Hayashi; Chikahiro Nagata; Kazuki Hoshino; Yoshikuni Onodera; Kunihiko Nishino; Akihito Yamaguchi
The multidrug efflux transporter AcrB and its homologues are important in the multidrug resistance of Gram-negative pathogens. However, despite efforts to develop efflux inhibitors, clinically useful inhibitors are not available at present. Pyridopyrimidine derivatives are AcrB- and MexB-specific inhibitors that do not inhibit MexY; MexB and MexY are principal multidrug exporters in Pseudomonas aeruginosa. We have previously determined the crystal structure of AcrB in the absence and presence of antibiotics. Drugs were shown to be exported by a functionally rotating mechanism through tandem proximal and distal multisite drug-binding pockets. Here we describe the first inhibitor-bound structures of AcrB and MexB, in which these proteins are bound by a pyridopyrimidine derivative. The pyridopyrimidine derivative binds tightly to a narrow pit composed of a phenylalanine cluster located in the distal pocket and sterically hinders the functional rotation. This pit is a hydrophobic trap that branches off from the substrate-translocation channel. Phe 178 is located at the edge of this trap in AcrB and MexB and contributes to the tight binding of the inhibitor molecule through a π–π interaction with the pyridopyrimidine ring. The voluminous side chain of Trp 177 located at the corresponding position in MexY prevents inhibitor binding. The structure of the hydrophobic trap described in this study will contribute to the development of universal inhibitors of MexB and MexY in P. aeruginosa.
Journal of Antimicrobial Chemotherapy | 2008
Ryo Okumura; Tsuyoshi Hirata; Yoshikuni Onodera; Kazuki Hoshino; Tsuyoshi Otani; Tomoko Yamamoto
OBJECTIVES DC-159a (a novel quinolone) and sitafloxacin (DU-6859a) are structurally related quinolones, bearing a 3-aminopyrrolidyl substitution. We investigated the relationship between the target preferences of these 3-aminopyrrolidyl quinolones, in vitro potencies and emergence of quinolone-resistant mutants in Streptococcus pneumoniae, compared with other quinolones. METHODS MICs, resistance frequencies and mutant prevention concentrations (MPCs) were determined using quinolone-susceptible strains and first-step parC mutant strains of S. pneumoniae. Target preferences were tested by the following two methods: antibacterial activities against gyrA or parC mutants and in vitro enzyme assays for the determination of 50% inhibition (IC(50)) values. RESULTS DC-159a and sitafloxacin exhibited potent antibacterial activities, low frequencies of mutant selection, low MPCs and narrow mutant selection windows against both quinolone-susceptible strains and first-step parC mutants of S. pneumoniae, compared with gatifloxacin, moxifloxacin and other quinolones tested. DC-159a and sitafloxacin showed relatively low MIC ratios against single gyrA or parC mutants relative to the wild-type strain and low IC(50) ratios against DNA gyrase and topoisomerase IV. CONCLUSIONS DC-159a and sitafloxacin demonstrated a more balanced dual-targeting activity than gatifloxacin, moxifloxacin and other quinolones tested. In addition, DC-159a and sitafloxacin have a lower propensity for selecting first- and second-step resistant mutants.
Antimicrobial Agents and Chemotherapy | 2002
Yoshikuni Onodera; Jun Okuda; Mayumi Tanaka; Kenichi Sato
ABSTRACT We have cloned the DNA gyrase and topoisomerase IV genes of Enterococcus faecalis to examine the actions of quinolones against E. faecalis genetically and enzymatically. We first generated levofloxacin-resistant mutants of E. faecalis by stepwise selection with increasing drug concentrations and analyzed the quinolone resistance-determining regions of gyrA and parC from the resistant mutants. Isogenic mutants with low-level resistance contained a mutation in gyrA, whereas those with higher levels of resistance had mutations in both gyrA and parC. These results suggested that gyrA is the primary target for levofloxacin in E. faecalis. We then purified the recombinant DNA gyrase and topoisomerase IV enzymes of E. faecalis and measured the in vitro inhibitory activities of quinolones against these enzymes. The 50% inhibitory concentrations (IC50s) of levofloxacin, ciprofloxacin, sparfloxacin, tosufloxacin, and gatifloxacin for DNA gyrase were found to be higher than those for topoisomerase IV. In conflict with the genetic data, these results indicated that topoisomerase IV would be the primary target for quinolones in E. faecalis. Among the quinolones tested, the IC50 of sitafloxacin (DU-6859a), which shows the greatest potency against enterococci, for DNA gyrase was almost equal to that for topoisomerase IV; its IC50s were the lowest among those of all the quinolones tested. These results indicated that other factors can modulate the effect of target affinity to determine the bacterial killing pathway, but the highest inhibitory actions against both enzymes correlated with good antienterococcal activities.
Antimicrobial Agents and Chemotherapy | 2013
Saito Higuchi; Yoshikuni Onodera; Megumi Chiba; Kazuki Hoshino; Naomasa Gotoh
ABSTRACT We investigated the in vitro activity of DS-8587, a novel fluoroquinolone, against Acinetobacter baumannii. The MICs of DS-8587 against clinical isolates and its inhibitory activity against target enzymes were superior to those of ciprofloxacin and levofloxacin. Furthermore, the antibacterial activity of DS-8587 was less affected by adeA/adeB/adeC or abeM efflux pumps than was that of ciprofloxacin and the frequency of single-step mutations with DS-8587 was lower than that with ciprofloxacin. DS-8587 might be an effective agent against A. baumannii infection.
Journal of Microbiological Methods | 2012
Shinichiro Yamachika; Yoshikuni Onodera; Keiichi Hiramatsu; Hiroyuki Takase
Staphylococcus aureus is a Gram-positive coccus and one of the major causes of community-acquired and hospital-acquired infections. We established the convenient and reliable experimental system for analyzing the essentiality and function of genes, the plasmid integration (PI) method. This method is based on plasmid integration into the genome by single cross-over recombination using a temperature-sensitive shuttle vector, and it was validated using known essential genes, gyrA and mvaD, and non-essential genes, sigB and hla. Then we analyzed 116 S. aureus conserved hypothetical protein genes with the PI method, and identified 28 essential genes. Moreover, applying the PI method, we confirmed the functional redundancy between the S. aureus gene (SA0865) and its ortholog human gene, the NAD kinase gene. These results show that the PI method is a powerful tool for the identification of essential genes and functional analysis by evaluation of complementarity.
Antimicrobial Agents and Chemotherapy | 1997
Mayumi Tanaka; Yoshikuni Onodera; Yoko Uchida; K Sato; Isao Hayakawa
Journal of Infection and Chemotherapy | 2000
Mayumi Tanaka; Tong Wang; Yoshikuni Onodera; Yoko Uchida; Kenichi Sato
Antimicrobial Agents and Chemotherapy | 2005
Tomoo Saga; Mitsuo Kaku; Yoshikuni Onodera; Shinichiro Yamachika; Kenichi Sato; Hiroyuki Takase
Journal of Antimicrobial Chemotherapy | 2001
Yoshikuni Onodera; Mayumi Tanaka; Kenichi Sato
Journal of Antimicrobial Chemotherapy | 1999
Yoshikuni Onodera; Yoko Uchida; Mayumi Tanaka; Kenichi Sato