Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoshimi Oshima is active.

Publication


Featured researches published by Yoshimi Oshima.


The Plant Cell | 2013

MIXTA-Like Transcription Factors and WAX INDUCER1/SHINE1 Coordinately Regulate Cuticle Development in Arabidopsis and Torenia fournieri

Yoshimi Oshima; Masahito Shikata; Tomotsugu Koyama; Norihiro Ohtsubo; Nobutaka Mitsuda; Masaru Ohme-Takagi

MIXTA-like MYB transcription factors MYB106 and MYB16, which are known to be involved in epidermal cell shaping, regulate accumulation of cuticular waxes and nanoridges, as revealed by employing Arabidopsis and wishbone flower as model systems. MYB106 positively regulates the expression of cuticle biosynthesis genes and another cuticle regulator, WIN1/SHN1 transcription factor, as well. The waxy plant cuticle protects cells from dehydration, repels pathogen attack, and prevents organ fusion during development. The transcription factor WAX INDUCER1/SHINE1 (WIN1/SHN1) regulates the biosynthesis of waxy substances in Arabidopsis thaliana. Here, we show that the MIXTA-like MYB transcription factors MYB106 and MYB16, which regulate epidermal cell morphology, also regulate cuticle development coordinately with WIN1/SHN1 in Arabidopsis and Torenia fournieri. Expression of a MYB106 chimeric repressor fusion (35S:MYB106-SRDX) and knockout/down of MYB106 and MYB16 induced cuticle deficiencies characterized by organ adhesion and reduction of epicuticular wax crystals and cutin nanoridges. A similar organ fusion phenotype was produced by expression of a WIN1/SHN1 chimeric repressor. Conversely, the dominant active form of MYB106 (35S:MYB106-VP16) induced ectopic production of cutin nanoridges and increased expression of WIN1/SHN1 and wax biosynthetic genes. Microarray experiments revealed that MYB106 and WIN1/SHN1 regulate similar sets of genes, predominantly those involved in wax and cutin biosynthesis. Furthermore, WIN1/SHN1 expression was induced by MYB106-VP16 and repressed by MYB106-SRDX. These results indicate that the regulatory cascade of MIXTA-like proteins and WIN1/SHN1 coordinately regulate cutin biosynthesis and wax accumulation. This study reveals an additional key aspect of MIXTA-like protein function and suggests a unique relationship between cuticle development and epidermal cell differentiation.


Plant Cell and Environment | 2014

A step towards understanding plant responses to multiple environmental stresses: a genome-wide study

Nasser Sewelam; Yoshimi Oshima; Nobutaka Mitsuda; Masaru Ohme-Takagi

In natural habitats, especially in arid areas, plants are often simultaneously exposed to multiple abiotic stresses, such as salt, osmotic and heat stresses. However, most analyses of gene expression in stress responses examine individual stresses. In this report, we compare gene expression in individual and combined stresses. We show that combined stress treatments with salt, mannitol and heat induce a unique pattern of gene expression that is not a simple merge of the individual stress responses. Under multiple stress conditions, expression of most heat and salt stress-responsive genes increased to levels similar to or higher than those measured in single stress conditions, but osmotic stress-responsive genes increased to lower levels. Genes up-regulated to higher levels under multiple stress condition than single stress conditions include genes for heat shock proteins, heat shock regulators and late embryogenesis abundant proteins (LEAs), which protect other proteins from damage caused by stresses, suggesting their importance in multiple stress condition. Based on this analysis, we identify candidate genes for engineering crop plants tolerant to multiple stresses.


Methods of Molecular Biology | 2011

CRES-T, An Effective Gene Silencing System Utilizing Chimeric Repressors

Nobutaka Mitsuda; Kyoko Matsui; Miho Ikeda; Masaru Nakata; Yoshimi Oshima; Yukari Nagatoshi; Masaru Ohme-Takagi

Chimeric REpressor gene Silencing Technology (CRES-T) is a useful tool for functional analysis of plant transcription factors. In this system, a chimeric repressor that is produced by fusion of a transcription factor to the plant-specific EAR-motif repression domain (SRDX) suppresses target genes of a transcription factor dominantly over the activity of endogenous and functionally redundant transcription factors. As a result, the transgenic plants that express a chimeric repressor exhibit phenotypes similar to loss-of-function of the alleles of the gene encoding the transcription factor. This system is simple and effective and can be used as a powerful tool not only for functional analysis of redundant transcription factors but also for the manipulation of plant traits by active suppression of the gene expression. Strategies for construction of the chimeric repressors and their expression in transgenic plants are described. Transient effector-reporter assays for functional analysis of transcription factors and detection of protein-protein interactions using the trans-repressive activity of SRDX repression domain are also described.


Scientific Reports | 2013

Multi-petal cyclamen flowers produced by AGAMOUS chimeric repressor expression.

Yuri Tanaka; Yoshimi Oshima; Tomomichi Yamamura; Masao Sugiyama; Nobutaka Mitsuda; Norihiro Ohtsubo; Masaru Ohme-Takagi; Teruhiko Terakawa

Cyclamen persicum (cyclamen) is a commercially valuable, winter-blooming perennial plant. We cloned two cyclamen orthologues of AGAMOUS (AG), CpAG1 and CpAG2, which are mainly expressed in the stamen and carpel, respectively. Cyclamen flowers have 5 petals, but expression of a chimeric repressor of CpAG1 (CpAG1-SRDX) caused stamens to convert into petals, resulting in a flower with 10 petals. By contrast, CpAG2-SRDX only caused incomplete formation of stamens and carpels. Expression in Arabidopsis thaliana showed similar effects on flower organ specification. Simultaneous expression of CpAG1-SRDX and CpAG2-SRDX in cyclamen induced rose-like, multi-petal flowers, a potentially valuable trait in commercial ornamental varieties. Expression of CpAG2-SRDX in a cyclamen mutant lacking expression of CpAG1 more effectively produced multi-petal flowers. Here, we controlled the number of petals in cyclamen by simple genetic engineering with a chimeric repressor. This strategy may be applicable useful for other ornamental plants with two distinct AG orthologues.


Scientific Reports | 2016

Wood reinforcement of poplar by rice NAC transcription factor

Shingo Sakamoto; Naoki Takata; Yoshimi Oshima; Kouki Yoshida; Toru Taniguchi; Nobutaka Mitsuda

Lignocellulose, composed of cellulose, hemicellulose, and lignin, in the secondary cell wall constitutes wood and is the most abundant form of biomass on Earth. Enhancement of wood accumulation may be an effective strategy to increase biomass as well as wood strength, but currently only limited research has been undertaken. Here, we demonstrated that OsSWN1, the orthologue of the rice NAC Secondary-wall Thickening factor (NST) transcription factor, effectively enhanced secondary cell wall formation in the Arabidopsis inflorescence stem and poplar (Populus tremula×Populus tremuloides) stem when expressed by the Arabidopsis NST3 promoter. Interestingly, in transgenic Arabidopsis and poplar, ectopic secondary cell wall deposition in the pith area was observed in addition to densification of the secondary cell wall in fiber cells. The cell wall content or density of the stem increased on average by up to 38% and 39% in Arabidopsis and poplar, respectively, without causing growth inhibition. As a result, physical strength of the stem increased by up to 57% in poplar. Collectively, these data suggest that the reinforcement of wood by NST3pro:OsSWN1 is a promising strategy to enhance wood-biomass production in dicotyledonous plant species.


Plant Biotechnology Journal | 2016

A petal-specific InMYB1 promoter from Japanese morning glory: a useful tool for molecular breeding of floricultural crops.

Mirai Azuma; Reina Morimoto; Mana Hirose; Yasumasa Morita; Atsushi Hoshino; Shigeru Iida; Yoshimi Oshima; Nobutaka Mitsuda; Masaru Ohme-Takagi; Katsuhiro Shiratake

Production of novel transgenic floricultural crops with altered petal properties requires transgenes that confer a useful trait and petal-specific promoters. Several promoters have been shown to control transgenes in petals. However, all suffer from inherent drawbacks such as low petal specificity and restricted activity during the flowering stage. In addition, the promoters were not examined for their ability to confer petal-specific expression in a wide range of plant species. Here, we report the promoter of InMYB1 from Japanese morning glory as a novel petal-specific promoter for molecular breeding of floricultural crops. First, we produced stable InMYB1_1kb::GUS transgenic Arabidopsis and Eustoma plants and characterized spatial and temporal expression patterns under the control of the InMYB1 promoter by histochemical β-glucuronidase (GUS) staining. GUS staining patterns were observed only in petals. This result showed that the InMYB1 promoter functions as a petal-specific promoter. Second, we transiently introduced the InMYB1_1 kb::GUS construct into Eustoma, chrysanthemum, carnation, Japanese gentian, stock, rose, dendrobium and lily petals by particle bombardment. GUS staining spots were observed in Eustoma, chrysanthemum, carnation, Japanese gentian and stock. These results showed that the InMYB1 promoter functions in most dicots. Third, to show the InMYB1 promoter utility in molecular breeding, a MIXTA-like gene function was suppressed or enhanced under the control of InMYB1 promoter in Arabidopsis. The transgenic plant showed a conspicuous morphological change only in the form of wrinkled petals. Based on these results, the InMYB1 promoter can be used as a petal-specific promoter in molecular breeding of floricultural crops.


Plant Signaling & Behavior | 2013

The MIXTA-like transcription factor MYB16 is a major regulator of cuticle formation in vegetative organs.

Yoshimi Oshima; Nobutaka Mitsuda

Cuticle secreted on the surface of the epidermis of aerial organs protects plants from the external environment. We recently found that Arabidopsis MIXTA-like R2R3-MYB family members MYB16 and MYB106 regulate cuticle formation in reproductive organs and trichomes. However, the artificial miRNA (amiRNA)-mediated knockdown plants showed no clear phenotypic abnormality in vegetative tissues. In this study, we used RNA interference (RNAi) targeting MYB16 to produce plants with reduced expression of both MYB16 and MYB106. The rosette leaves of RNAi plants showed more severe permeable cuticle phenotypes than the myb106 mutants expressing the MYB16 amiRNA in the previous study. The RNAi plants also showed reduced expression of cuticle biosynthesis genes LACERATA and ECERIFERUM1. By contrast, expression of a gain-of-function MYB16 construct induced over-accumulation of waxy substances on leaves. These results suggest that MYB16 functions as a major regulator of cuticle formation in vegetative organs, in addition to its effect in reproductive organs and trichomes.


Plant Science | 2018

Buckwheat R2R3 MYB transcription factor FeMYBF1 regulates flavonol biosynthesis

Katsuhiro Matsui; Yoshimi Oshima; Nobutaka Mitsuda; Shingo Sakamoto; Yoichi Nishiba; Amanda R. Walker; Masaru Ohme-Takagi; Simon P. Robinson; Yasuo Yasui; Masashi Mori; Hiromi Takami

Buckwheat (Fagopyrum esculentum) contains high amounts of flavonoids, especially flavonols (e.g., rutin), which are thought to be highly beneficial for human health. Little is known, however, about the regulation of flavonol synthesis in buckwheat. We identified a buckwheat gene encoding an R2R3 MYB transcription factor, and named this gene FeMYBF1. Analysis of the deduced amino acid sequence and phylogenetic analysis suggested that FeMYBF1 encodes an ortholog of the Arabidopsis flavonol regulators AtMYB11, AtMYB12 and AtMYB111. Expression of FeMYBF1 in a flavonol-deficient Arabidopsis triple mutant (myb11 myb12 myb111) restored flavonol synthesis. Constitutive expression of FeMYBF1 driven by the CaMV 35S promoter in Arabidopsis resulted in over-accumulation of flavonol glycosides and upregulation of the expression of AtFLS1. Transient expression assays showed that FeMYBF1 activated the promoter of the Arabidopsis gene encoding AtFLS1, and the promoters of buckwheat genes related to anthocyanin and proanthocyanidin synthesis such as dihydroflavonol 4-reductase (DFR) and leucoanthocyanidin dioxygenase (LDOX) in addition to genes encoding FLS. The results indicate that FeMYBF1 regulates flavonol synthesis and may have a role in synthesis of other flavonoid compounds, and also that buckwheat may have alternative pathway of flavonol synthesis through DFR and LDOX.


Plant and Cell Physiology | 2016

The Petal-Specific InMYB1 Promoter Functions by Recognizing Petaloid Cells.

Mirai Azuma; Nobutaka Mitsuda; Koji Goto; Yoshimi Oshima; Masaru Ohme-Takagi; Shungo Otagaki; Shogo Matsumoto; Katsuhiro Shiratake

The InMYB1 gene in Japanese morning glory (Ipomoea nil) is a member of the MYB transcription factor family. The promoter of InMYB1 has been reported to induce petal-specific gene expression in Arabidopsis and Eustoma, and has the same function in several other dicotyledonous plants. Most flowers consist of sepals, petals, stamens and a carpel, whose identity establishment is explained by the ABC model. The establishment of the identity of petals is determined by the expression of class A and B genes in whorl 2. The aim of this study was to clarify whether the InMYB1 promoter functions by recognizing whorl position or petal identity by examining its activity in various mutant and transgenic Arabidopsis thaliana plants in which genes related to the ABC model have been modified. In plants defective in class C gene function, the InMYB1 promoter functioned not only in petals generated in whorl 2 but also in petaloid organs generated in whorl 3; while in the plants defective in class B gene function, the InMYB1 promoter did not function in the sepaloid organs generated in whorl 2. Plants overexpressing class A, B and E genes set flowers with petaloid sepals in whorl 1, i.e. the lateral parts were white and looked like petals, while the central parts were green and looked like sepals. The InMYB1 promoter functioned in the lateral white parts but not in the central green parts. These results show that the InMYB1 promoter functions by recognizing petal identity at the cellular level rather than the whorl position. The petal-specific function of the InMYB1 promoter could be used as a marker to identify petaloid cells.


Plant Biotechnology | 2011

Novel vector systems to accelerate functional analysis of transcription factors using chimeric repressor gene-silencing technology (CRES-T)

Yoshimi Oshima; Nobutaka Mitsuda; Masaru Nakata; Tsuyoshi Nakagawa; Shingo Nagaya; Ko Kato; Masaru Ohme-Takagi

Collaboration


Dive into the Yoshimi Oshima's collaboration.

Top Co-Authors

Avatar

Nobutaka Mitsuda

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Masaru Ohme-Takagi

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Norihiro Ohtsubo

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar

Masahito Shikata

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar

Masaru Nakata

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Tomotsugu Koyama

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hiroyasu Yamaguchi

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katsutomo Sasaki

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge