Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoshimori Kiriyama is active.

Publication


Featured researches published by Yoshimori Kiriyama.


Knee | 2012

A quantitative assessment of varus thrust in patients with medial knee osteoarthritis

Yuji Kuroyanagi; Takeo Nagura; Yoshimori Kiriyama; Hideo Matsumoto; Toshiro Otani; Yoshiaki Toyama; Yasunori Suda

Varus thrust is an abnormal lateral knee motion frequently seen in patients with medial knee osteoarthritis (OA) during gait. It is a worsening of the alignment in the stance phase of the gait cycle and closely relates to disease progression. In this study, we measured the thrust quantitatively using skin markers and examined the relationship to other static and dynamic parameters. Forty-four knees in 32 patients (mean age, 72years; range, 64-81years) who exhibited the radiographic OA at least grade 2 according to the Kellgren-Lawrence (K-L) scale were enrolled. Gait analysis was performed for each patient to measure the amount of thrust and knee adduction moment. The amounts of thrust in subjects with K-L grades 2 (25 knees), 3 (13 knees), and 4 (6 knees) were 2.4°(±1.3°), 2.8°(±1.4°), and 7.2°(±5.3°), respectively and the knee adduction moments were 3.6(±1.5) %BW⁎Ht, 3.9(±1.2) %BW⁎Ht and 6.9(±2.2%) BW⁎Ht, respectively. The amount of thrust also exhibited significant correlation to static radiographic alignment (R=0.47: 95% confidence interval 0.67-0.21, p=0.0038) and showed greater correlation to the knee adduction moment (R=0.73: 95% confidence interval 0.84-0.55, p<0.001), which has been identified as an important dynamic index of the disease. The amount of thrust, which is able to be measured by simple inexpensive equipment, correlated to static and dynamic parameters and may offer an important clinical index for knee OA.


American Journal of Sports Medicine | 2012

The function of the acromioclavicular and coracoclavicular ligaments in shoulder motion: A whole-cadaver study

Satoshi Oki; Noboru Matsumura; Wataru Iwamoto; Hiroyasu Ikegami; Yoshimori Kiriyama; Toshiyasu Nakamura; Yoshiaki Toyama; Takeo Nagura

Background: Scapulothoracic dyskinesis is an important consequence of acromioclavicular joint dislocations. However, no reports have described changes in 3-dimensional motions of the scapula and clavicle with respect to the thorax caused by acromioclavicular joint dislocation. Hypothesis: Sectioning of the acromioclavicular (AC) and coracoclavicular (CC) ligaments affects scapular and clavicular motion in a whole-cadaver model. Study Design: Controlled laboratory study. Methods: We evaluated shoulder girdle motion (scapula, clavicle, and humerus) relative to the thorax of 14 shoulders from 8 whole cadavers after sequential sectioning of the AC and CC ligaments (trapezoid and conoid ligaments). An electromagnetic tracking device measured 3-dimensional kinematics of the scapula and clavicle during humerothoracic elevation in the coronal and sagittal planes and adduction in the horizontal plane. Results: Sectioning of the AC ligament increased clavicular retraction during sagittal plane elevation and horizontal plane adduction. Sectioning of the trapezoid ligament decreased scapular external rotation during sagittal plane elevation and horizontal plane adduction. Sectioning of the conoid ligament decreased scapular posterior tilting during sagittal plane elevation and horizontal plane adduction. Acromioclavicular and CC ligament sectioning also delayed clavicular posterior rotation and increased clavicular upward rotation during coronal plane elevation. Conclusion: Our study revealed that AC and CC ligament disruption affected in vitro shoulder girdle kinematics in the whole-cadaver model. Clinical Relevance: The results of this cadaveric study revealed that AC and CC ligament disruption could cause dyskinesis of the scapula and clavicle. The kinematic changes could be a potential source of pain and dysfunction in the shoulder with AC joint dislocation, and therefore surgical reconstruction may be indicated in certain patients.


Journal of Biomechanics | 2014

Kinematic motion of the anterior cruciate ligament deficient knee during functionally high and low demanding tasks

Kentaro Takeda; Takayuki Hasegawa; Yoshimori Kiriyama; Hideo Matsumoto; Toshiro Otani; Yoshiaki Toyama; Takeo Nagura

The purpose of this study was to determine whether mechanical adaptations were present in patients with anterior cruciate ligament (ACL)-deficient knees during high-demand activities. Twenty-two subjects with unilateral ACL deficiency (11 males and 11 females, 19.6 months after injury) performed five different activities at a comfortable speed (level walking, ascending and descending steps, jogging, jogging to a 90-degree side cutting toward the opposite direction of the tested side). Three-dimensional knee kinematics for the ACL-deficient knees and uninjured contralateral knees were evaluated using the Point Cluster Technique. There was no significant difference in knee flexion angle, but an offset toward the knee in less valgus and more external tibial rotation was observed in the ACL-deficient knee. The tendency was more obvious in high demand motions, and a significant difference was clearly observed in the side cutting motions. These motion patterns, with the knee in less valgus and more external tibial rotation, are proposed to be an adaptive movement to avoid pivot shift dynamically, and reveal evidence in support of a dynamic adaptive motion occurring in ACL-deficient knees.


Journal of Shoulder and Elbow Surgery | 2010

Computer simulation of humeral shaft fracture in throwing

Kensuke Sakai; Yoshimori Kiriyama; Hiroo Kimura; Noriaki Nakamichi; Toshiyasu Nakamura; Hiroyasu Ikegami; Hideo Matsumoto; Yoshiaki Toyama; Takeo Nagura

HYPOTHESIS Throwing fractures of the humerus are well known, but the exact mechanism of injury is not clear. It has been postulated that these may be stress fractures because the forces have not seemed sufficient to cause acute fractures while throwing. MATERIALS AND METHODS Using finite element analysis, we reproduced fractures of the humerus using 3-dimensional models built from computed tomography images of 5 healthy volunteers. To apply the load during throwing, we assumed that the humeral head was completely fixed, and external rotation torque was applied to the distal end of the humerus until the stress of the bone elements became greater than yield stress. We reproduced the fracture line by removing the bone elements. RESULTS The maximum stress concentration was seen in the distal shaft, where a typical spiral fracture was created in all cases. In the humeral models, the torque required to initiate fracture ranged from 51 to 70 Nm. A strong correlation existed between the torque required to initiate fracture and thickness of the humeral cortical bone (R(2) = 0.74). CONCLUSION These results indicate that thickness of the humerus represents one factor contributing to fractures that occur while throwing. LEVEL OF EVIDENCE Basic science study.


Journal of Shoulder and Elbow Surgery | 2013

Acromioclavicular joint ligamentous system contributing to clavicular strut function: A cadaveric study

Satoshi Oki; Noboru Matsumura; Wataru Iwamoto; Hiroyasu Ikegami; Yoshimori Kiriyama; Toshiyasu Nakamura; Yoshiaki Toyama; Takeo Nagura

HYPOTHESIS We hypothesized that the clavicle overrides the acromion during certain shoulder motions for individuals with acromioclavicular (AC) joint separation producing clinical symptoms. We measured 3-dimensional clavicular and scapular motions in AC joint separation models during humerothoracic motions, which should be impacted by the loss of AC joint continuity. MATERIALS AND METHODS Ten shoulders from 6 whole cadavers were used. The scapular and clavicular motions were measured in intact and AC joint separation models using an electromagnetic tracking device. The measurement was performed during shoulder abduction with humerothoracic neutral rotation. It was also measured during shoulder abduction with humerothoracic internal rotation, which could cause clavicular overriding. The kinematic changes caused by ligament sectioning were evaluated in these 2 arm motions. RESULTS The clavicle completely overrode the acromion in all AC separation models during abduction with internal rotation, but not in any shoulders during abduction with neutral rotation. Upward clavicular rotation increased, posterior clavicular rotation decreased, and external scapular rotation decreased with ligament sectioning. These kinematic changes were common for both of the measured arm motions. Scapular upward rotation and posterior tilt did not change because of ligament sectioning during abduction with neutral rotation. However, these scapular rotations significantly decreased with ligament sectioning during shoulder abduction with internal rotation. CONCLUSION Scapular and clavicular kinematics were affected in AC separation models. Abduction with humeral internal rotation resulted in a decrease in scapular posterior tilt and upward rotation in AC separation models, and thereby could lead to AC joint articulation dysfunction.


Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2014

A miniature tension sensor to measure surgical suture tension of deformable musculoskeletal tissues during joint motion

Yoshimori Kiriyama; Hideo Matsumoto; Yoshiaki Toyama; Takeo Nagura

The aim of this study was to develop a new suture tension sensor for musculoskeletal soft tissue that shows deformation or movements. The suture tension sensor was 10 mm in size, which was small enough to avoid conflicting with the adjacent sensor. Furthermore, the sensor had good linearity up to a tension of 50 N, which is equivalent to the breaking strength of a size 1 absorbable suture defined by the United States Pharmacopeia. The design and mechanism were analyzed using a finite element model prior to developing the actual sensor. Based on the analysis, adequate material was selected, and the output linearity was confirmed and compared with the simulated result. To evaluate practical application, the incision of the skin and capsule were sutured during simulated total knee arthroplasty. When conventional surgery and minimally invasive surgery were performed, suture tensions were compared. In minimally invasive surgery, the distal portion of the knee was dissected, and the proximal portion of the knee was dissected additionally in conventional surgery. In the skin suturing, the maximum tension was 4.4 N, and this tension was independent of the sensor location. In contrast, the sensor suturing the capsule in the distal portion had a tension of 4.4 N in minimally invasive surgery, while the proximal sensor had a tension of 44 N in conventional surgery. The suture tensions increased nonlinearly and were dependent on the knee flexion angle. Furthermore, the tension changes showed hysteresis. This miniature tension sensor may help establish the optimal suturing method with adequate tension to ensure wound healing and early recovery.


Journal of Orthopaedic Science | 2014

Female recreational athletes demonstrate different knee biomechanics from male counterparts during jumping rope and turning activities

Hidenori Tanikawa; Hideo Matsumoto; Kengo Harato; Yoshimori Kiriyama; Yasunori Suda; Yoshiaki Toyama; Takeo Nagura

BackgroundA variety of athletic exercises are performed in sports training or rehabilitation after knee injuries. However, it remains unclear whether males and females exhibit similar joint loading during the various athletic motions. The purpose of this study was to identify gender differences in knee biomechanics during the athletic motions.MethodsThree-dimensional knee kinematics and kinetics were investigated in 20 recreational athletes (10 males and 10 females) while jumping rope, backward running, side running, side-to-side running, side-to-forward running, inside turning, and outside turning. The strengths of the quadriceps and hamstring muscles, the knee joint force, the knee joint angle, and the knee joint moment were compared between males and females using one-tailed t tests.ResultsPeak knee anterior force was greater in female recreational athletes than in their male counterparts during jumping rope, side-to-forward running, inside turning, and outside turning. Female subjects displayed greater peak knee abduction angles and greater peak knee flexion moments while jumping rope compared to their male counterparts. There were no significant differences between the sexes in knee kinematics and kinetics in the frontal and transverse planes during running and turning motions.ConclusionsFemale recreational athletes exhibited significantly different knee biomechanics compared with male counterparts during jumping rope and turning motions.


Journal of Orthopaedic Trauma | 2017

Three-dimensional Deformities of Non-operative Midshaft Clavicle Fractures: A Surface Matching Analysis

Satoshi Oki; Noboru Matsumura; Yoshimori Kiriyama; Takuji Iwamoto; Kazuki Sato; Takeo Nagura

Objective: The purpose of this study was to describe the 3-dimensional deformities of midshaft clavicle fractures, which had been treated nonoperatively, using computed tomography (CT) surface matching. Methods: Twenty-one patients with unilateral midshaft clavicle fracture, who had been treated nonoperatively, were enrolled and evaluated retrospectively. The 3-dimensional deformity of the fractured clavicle was evaluated by CT surface matching. CT scans of 21 age- and sex-matched patients with initial traumatic shoulder dislocation or proximal humeral fracture were enrolled as a control group, and the differences in 3-dimensional deformities and lengths of the clavicles between the fracture group and the control group were evaluated. A correlation analysis was also performed between rotational deformities and clavicular length shortening. Results: The affected clavicle showed 1.3 ± 6.9 degrees of downward angular deformity, 2.1 ± 8.0 degrees of anterior angular deformity, and 5.0 ± 4.9 degrees of anterior rotational deformity. Compared with the control group, the fractured clavicle showed larger anterior rotational deformity (P = 0.021). Shortening of the clavicle demonstrated negative correlation with anterior axial rotation (R = −0.534, P = 0.013), but no correlation was found between clavicular shortening and the other 2 rotational deformities. Conclusion: In cases of midshaft clavicle fracture, the distal fragment usually rotates anteriorly because of its anatomical relationships. Shortening deformity after clavicle fracture was reported to change shoulder kinematics, and anterior rotational deformity might adversely affect scapular motion.


Journal of Biomechanics | 2014

Quantification of the spatial strain distribution of scoliosis using a thin-plate spline method

Yoshimori Kiriyama; Kota Watanabe; Morio Matsumoto; Yoshiaki Toyama; Takeo Nagura

The objective of this study was to quantify the three-dimensional spatial strain distribution of a scoliotic spine by nonhomogeneous transformation without using a statistically averaged reference spine. The shape of the scoliotic spine was determined from computed tomography images from a female patient with adolescent idiopathic scoliosis. The shape of the scoliotic spine was enclosed in a rectangular grid, and symmetrized using a thin-plate spline method according to the node positions of the grid. The node positions of the grid were determined by numerical optimization to satisfy symmetry. The obtained symmetric spinal shape was enclosed within a new rectangular grid and distorted back to the original scoliotic shape using a thin-plate spline method. The distorted grid was compared to the rectangular grid that surrounded the symmetrical spine. Cobbs angle was reduced from 35° in the scoliotic spine to 7° in the symmetrized spine, and the scoliotic shape was almost fully symmetrized. The scoliotic spine showed a complex Green-Lagrange strain distribution in three dimensions. The vertical and transverse compressive/tensile strains in the frontal plane were consistent with the major scoliotic deformation. The compressive, tensile and shear strains on the convex side of the apical vertebra were opposite to those on the concave side. These results indicate that the proposed method can be used to quantify the three-dimensional spatial strain distribution of a scoliotic spine, and may be useful in quantifying the deformity of scoliosis.


ASME 2009 Summer Bioengineering Conference, Parts A and B | 2009

A rigid body and spring model of the lumbar spine which considers the mechanical loads at the bone-screw interface

Yoshimori Kiriyama; Morio Matsumoto; Yoshiaki Toyama; Thomas P. Andriacchi; Takeo Nagura

A spinal instrument with pedicle screws is one of the most effective surgical techniques for correction of spinal deformity. However, when excessive mechanical loads are applied on the implant upon the fixation, there is a concern for back out of the screw in the cases with poor bone condition such as osteoporosis. For that reason, the mechanical loads at the bone-screw interface should be analyzed for safe and successful correction.Copyright

Collaboration


Dive into the Yoshimori Kiriyama's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge