Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoshinaga Okugawa is active.

Publication


Featured researches published by Yoshinaga Okugawa.


Carcinogenesis | 2014

Metastasis-associated long non-coding RNA drives gastric cancer development and promotes peritoneal metastasis

Yoshinaga Okugawa; Yuji Toiyama; Keun Hur; Shusuke Toden; Susumu Saigusa; Koji Tanaka; Yasuhiro Inoue; Yasuhiko Mohri; Masato Kusunoki; C.R. Boland; Ajay Goel

The prognosis of gastric cancer (GC) patients with peritoneal dissemination remains poor, and a better understanding of the underlying mechanisms is critical for the development of new treatments that will improve survival in these patients. This study aimed to clarify the clinical and biological role of two key metastasis-associated long non-coding RNAs (lncRNAs) in GC. We analyzed the expression levels of two lncRNAs-Metastasis-Associated Lung Adenocarcinoma Transcript 1 (MALAT1) and HOX-Antisense Intergenic RNA (HOTAIR)-by real-time reverse transcription PCR in 300 gastric tissues (150 GC and 150 adjacent normal mucosa), and in seven GC cell lines. Functional characterization for the role of HOTAIR in GC was performed by small interfering RNA (siRNA) knockdown, followed by series of in-vitro and in-vivo experiments. Expression of both lncRNAs was significantly higher in cancerous tissues than in corresponding normal mucosa, and higher expression of these lncRNAs significantly correlated with peritoneal metastasis in GC patients. In addition, elevated HOTAIR expression emerged both as an independent prognostic and risk factor for peritoneal dissemination. SiRNA knockdown of HOTAIR in GC cells significantly inhibited cell proliferation, migration and invasion, but concurrently enhanced the anoikis rate in transfected cells. In an in vivo assay, HOTAIR siRNA-transfected MKN45 cells injected into nude mice inhibited the growth of xenograft tumors and peritoneal metastasis compared with controls. Our data provide novel evidence for the biological and clinical significance of HOTAIR expression as a potential biomarker for identifying patients with peritoneal metastasis, and as a novel therapeutic target in patients with gastric neoplasia.


Biochemical and Biophysical Research Communications | 2014

DNA METHYLATION AND MICRORNA BIOMARKERS FOR NONINVASIVE DETECTION OF GASTRIC AND COLORECTAL CANCER

Yuji Toiyama; Yoshinaga Okugawa; Ajay Goel

Cancer initiation and progression is controlled by both genetic and epigenetic events. Epigenetics refers to the study of mechanisms that alter gene expression without permanently altering the DNA sequence. Epigenetic alterations are reversible and heritable, and include changes in histone modifications, DNA methylation, and non-coding RNA-mediated gene silencing. Disruption of epigenetic processes can lead to altered gene function and malignant cellular transformation. Aberrant epigenetic modifications occur at the earliest stages of neoplastic transformation and are now believed to be essential players in cancer initiation and progression. Recent advances in epigenetics have not only offered a deeper understanding of the underlying mechanism(s) of carcinogenesis, but have also allowed identification of clinically relevant putative biomarkers for the early detection, disease monitoring, prognosis and risk assessment of cancer patients. At this moment, DNA methylation and non-coding RNA including with microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) represent the largest body of available literature on epigenetic biomarkers with the highest potential for cancer diagnosis. Following identification of cell-free nucleic acids in systematic circulation, increasing evidence has demonstrated the potential of cell-free epigenetic biomarkers in the blood or other body fluids for cancer detection. In this article, we summarize the current state of knowledge on epigenetic biomarkers - primarily DNA methylation and non-coding RNAs - as potential substrates for cancer detection in gastric and colorectal cancer, the two most frequent cancers within the gastrointestinal tract. We also discuss the obstacles that have limited the routine use of epigenetic biomarkers in the clinical settings and provide our perspective on approaches that might help overcome these hurdles, so that these biomarkers can be readily developed for clinical management of cancer patients.


Gut | 2015

MicroRNA-29c mediates initiation of gastric carcinogenesis by directly targeting ITGB1

Tae-Su Han; Keun Hur; Guorong Xu; Boram Choi; Yoshinaga Okugawa; Yuji Toiyama; Hiroko Oshima; Masanobu Oshima; Hyuk-Joon Lee; V. Narry Kim; Aaron N. Chang; Ajay Goel; Han-Kwang Yang

Objective Gastric cancer (GC) remains difficult to cure due to heterogeneity in a clinical challenge and the molecular mechanisms underlying this disease are complex and not completely understood. Accumulating evidence suggests that microRNAs (miRNAs) play an important role in GC, but the role of specific miRNAs involved in this disease remains elusive. We performed next generation sequencing (NGS)-based whole-transcriptome profiling to discover GC-specific miRNAs, followed by functional validation of results. Design NGS-based miRNA profiles were generated in matched pairs of GCs and adjacent normal mucosa (NM). Quantitative RT-PCR validation of miR-29c expression was performed in 274 gastric tissues, which included two cohorts of matched GC and NM specimens. Functional validation of miR-29c and its gene targets was undertaken in cell lines, as well as K19-C2mE and K19-Wnt1/C2mE transgenic mice. Results NGS analysis revealed four GC-specific miRNAs. Among these, miR-29c expression was significantly decreased in GC versus NM tissues (p<0.001). Ectopic expression of miR-29c mimics in GC cell lines resulted in reduced proliferation, adhesion, invasion and migration. High miR-29c expression suppressed xenograft tumour growth in nude mice. Direct interaction between miR-29c and its newly discovered target, ITGB1, was identified in cell lines and transgenic mice. MiR-29c expression demonstrated a stepwise decrease in wild type hyperplasia-dysplasia cascade in transgenic mice models of GC. Conclusions MiR-29c acts as a tumour suppressor in GC by directly targeting ITGB1. Loss of miR-29c expression is an early event in the initiation of gastric carcinogenesis and may serve as a diagnostic and therapeutic biomarker for patients with GC.


Carcinogenesis | 2015

Curcumin mediates chemosensitization to 5-fluorouracil through miRNA-induced suppression of epithelial-to-mesenchymal transition in chemoresistant colorectal cancer

Shusuke Toden; Yoshinaga Okugawa; Thomas Jascur; Dominik Wodarz; Natalia L. Komarova; Constanze Buhrmann; Mehdi Shakibaei; C. Richard Boland; Ajay Goel

Resistance to cytotoxic chemotherapy is a major cause of mortality in colorectal cancer (CRC) patients. Chemoresistance has been linked primarily to a subset of cancer cells undergoing epithelial-mesenchymal transition (EMT). Curcumin, a botanical with antitumorigenic properties, has been shown to enhance sensitivity of cancer cells to chemotherapeutic drugs, but the molecular mechanisms underlying this phenomenon remain unclear. Effects of curcumin and 5-fluorouracil (5FU) individually, and in combination, were examined in parental and 5FU resistant (5FUR) cell lines. We performed a series of growth proliferation and apoptosis assays in 2D and 3D cell cultures. Furthermore, we identified and analyzed the expression pattern of a subset of putative EMT-suppressive microRNAs (miRNAs) and their downstream target genes regulated by curcumin. Chemosensitizing effects of curcumin were validated in a xenograft mouse model. Combined treatment with curcumin and 5FU enhanced cellular apoptosis and inhibited proliferation in both parental and 5FUR cells, whereas 5FU alone was ineffective in 5FUR cells. A group of EMT-suppressive miRNAs were upregulated by curcumin treatment in 5FUR cells. Curcumin suppressed EMT in 5FUR cells by downregulating BMI1, SUZ12 and EZH2 transcripts, key mediators of cancer stemness-related polycomb repressive complex subunits. Using a xenograft and mathematical models, we further demonstrated that curcumin sensitized 5FU to suppress tumor growth. We provide novel mechanistic evidence for curcumin-mediated sensitization to 5FU-related chemoresistance through suppression of EMT in 5FUR cells via upregulation of EMT-suppressive miRNAs. This study highlights the potential therapeutic usefulness of curcumin as an adjunct in patients with chemoresistant advanced CRC.


Journal of the National Cancer Institute | 2015

Identification of a metastasis-specific MicroRNA signature in human colorectal cancer.

Keun Hur; Yuji Toiyama; Aaron J. Schetter; Yoshinaga Okugawa; Curtis C. Harris; C. Richard Boland; Ajay Goel

BACKGROUND Distant metastasis is the major cause of mortality in colorectal cancer (CRC). We performed a systemic, comprehensive discovery for expression patterns of metastasis-specific microRNAs (miRNAs) by directly comparing primary CRCs (pCRCs) and matched liver metastases (LMs) and evaluated the feasibility of their clinical application as metastasis-specific biomarkers. METHODS CRC metastasis-specific miRNA profiles were generated by analyzing nine pairs of pCRC and LM tissues, followed by quantitative validation in an independent cohort of 58 pairs of matched pCRC and LM tissues. We evaluated associations between miRNA expression and patient survival and ability to predict metastasis in another 84 patients with CRC. Subsequently, associations were quantitatively validated in 175 CRC tissues and 169 serum samples. Kaplan-Meier, Cox regression, and logistic regression analyses were used. All statistical tests were two-sided. RESULTS Twenty-three miRNAs were identified that were differentially expressed between pCRC and LM (P < .001; FDR < .5). Four miRNAs downregulated in LM (let-7i, miR-10b, miR-221, and miR-320a) and one upregulated miR (miR-885-5p) were quantitatively validated in pCRC (P < .0001). Low let-7i expression in pCRC tissue predicted worsened prognosis (hazard ratio [HR] = 5.0, 95% confidence interval [CI] = 1.0 to 24.4, P = .0479) as well as distant metastasis (odds ratio [OR] = 5.5, 95% CI = 1.1 to 26.8, P = .0334). High miR-10b expression in pCRC tissue independently predicted distant metastasis (OR = 4.9, 95% CI = 1.2 to 19.7, P = .0248). High serum miR-885-5p expression independently predicted prognosis (HR = 2.9, 95% CI = 1.1 to 7.5, P = .0323), LN metastasis (OR = 3.0, 95% CI = 1.3 to 7.2, P = .0116), and distant metastasis (OR = 3.1, 95% CI = 1.0 to 10.0, P = .0456), whereas tissue miR-885-5p expression did not. Expression patterns of miRNAs were confirmed by in situ hybridization. CONCLUSIONS We discovered a metastasis-specific miRNA signature in pCRCs and discovered novel tissue- and serum-based CRC metastasis-specific miRNA biomarkers through intensive validation. These unique miRNAs may be clinically applicable to predict prognosis and distant metastasis in CRC.


European Journal of Cancer | 2012

CXCL5, a promoter of cell proliferation, migration and invasion, is a novel serum prognostic marker in patients with colorectal cancer

Mikio Kawamura; Yuji Toiyama; Kouji Tanaka; Susumu Saigusa; Yoshinaga Okugawa; Junichiro Hiro; Keiichi Uchida; Yasuhiko Mohri; Yasuhiro Inoue; Masato Kusunoki

PURPOSE Serum CXCL5 levels in patients with colorectal cancer (CRC) were assessed to evaluate correlation with clinicopathologic features and prognosis. The effects of CXCL5 on CRC cells were also investigated in vitro. METHODS Based on cytokine array analysis, CXCL5 was identified as a novel prognostic serum marker. Serum levels of CXCL5 were assessed in 250 CRC patients and 33 normal volunteers by enzyme-linked immunosorbent assay (ELISA), and their relation to clinicopathologic findings and survival investigated. CXCL5 levels in CRC cell lines were also measured by ELISA, and CXCL5 and CXCR2 expression was evaluated by immunohistochemistry. To investigate the biological role of the CXCL5/CXCR2 axis, recombinant human CXCL5 and CXCR2 neutralisation antibodies were used for proliferation, migration and invasion assays. RESULTS Preoperative serum CXCL5 was significantly elevated in patients with CRC compared with healthy volunteers (p=0.013). High serum CXCL5 was significantly associated with female sex (p=0.0098) and liver metastasis (p=0.0040). Univariate analysis correlated elevated CXCL5 with poor overall survival (p=0.0002). Multivariate analysis showed that elevated CXCL5 was a significant and independent prognostic factor of survival in all CRC patients (p=0.038). CRC cells secreted CXCL5, and administration of recombinant human CXCL5 promoted proliferation, migration and partial invasion. These effects were generally inhibited by CXCR2 neutralisation antibody. CONCLUSIONS Preoperative serum CXCL5 could serve as a novel predictive marker for prognosis determination of CRC patients. CXCL5/CXCR2 axis might be associated with colorectal cancer progression.


Clinical Cancer Research | 2015

Serum miR-21, miR-29a, and miR-125b Are Promising Biomarkers for the Early Detection of Colorectal Neoplasia.

Atsushi Yamada; Takahiro Horimatsu; Yoshinaga Okugawa; Naoshi Nishida; Hajime Honjo; Hiroshi Ida; Tadayuki Kou; Toshihiro Kusaka; Yu Sasaki; Makato Yagi; Takuma Higurashi; Norio Yukawa; Yusuke Amanuma; Osamu Kikuchi; Manabu Muto; Yoshiyuki Ueno; Atsushi Nakajima; Tsutomu Chiba; C. Richard Boland; Ajay Goel

Purpose: Circulating microRNAs (miRNA) are emerging as promising diagnostic biomarkers for colorectal cancer, but their usefulness for detecting early colorectal neoplasms remains unclear. This study aimed to identify serum miRNA biomarkers for the identification of patients with early colorectal neoplasms. Experimental Design: A cohort of 237 serum samples from 160 patients with early colorectal neoplasms (148 precancerous lesions and 12 cancers) and 77 healthy subjects was analyzed in a three-step approach that included a comprehensive literature review for published biomarkers, a screening phase, and a validation phase. RNA was extracted from sera, and levels of miRNAs were examined by real-time RT-PCR. Results: Nine miRNAs (miR-18a, miR-19a, miR-19b, miR-20a, miR-21, miR-24, miR-29a, miR-92, and miR-125b) were selected as candidate biomarkers for initial analysis. In the screening phase, serum levels of miR-21, miR-29a, and miR-125b were significantly higher in patients with early colorectal neoplasm than in healthy controls. Elevated levels of miR-21, miR-29a, and miR-125b were confirmed in the validation phase using an independent set of subjects. Area under the curve (AUC) values for serum miR-21, miR-29a, miR-125b, and their combined score in discriminating patients with early colorectal neoplasm from healthy controls were 0.706, 0.741, 0.806, and 0.827, respectively. Serum levels of miR-29a and miR-125b were significantly higher in patients who had only small colorectal neoplasms (≤5 mm) than in healthy subjects. Conclusions: Because serum levels of miR-21, miR-29a, and miR-125b discriminated patients with early colorectal neoplasm from healthy controls, our data highlight the potential clinical use of these molecular signatures for noninvasive screening of patients with colorectal neoplasia. Clin Cancer Res; 21(18); 4234–42. ©2015 AACR.


PLOS ONE | 2014

In vivo characterization of neutrophil extracellular traps in various organs of a murine sepsis model.

Koji Tanaka; Yuhki Koike; Tadanobu Shimura; Masato Okigami; Shozo Ide; Yuji Toiyama; Yoshinaga Okugawa; Yasuhiro Inoue; Toshimitsu Araki; Keiichi Uchida; Yasuhiko Mohri; Akira Mizoguchi; Masato Kusunoki

Neutrophil extracellular traps (NETs) represent extracellular microbial trapping and killing. Recently, it has been implicated in thrombogenesis, autoimmune disease, and cancer progression. The aim of this study was to characterize NETs in various organs of a murine sepsis model in vivo and to investigate their associations with platelets, leukocytes, or vascular endothelium. NETs were classified as two distinct forms; cell-free NETs that were released away from neutrophils and anchored NETs that were anchored to neutrophils. Circulating cell-free NETs were characterized as fragmented or cotton-like structures, while anchored NETs were characterized as linear, reticular, membranous, or spot-like structures. In septic mice, both anchored and cell-free NETs were significantly increased in postcapillary venules of the cecum and hepatic sinusoids with increased leukocyte-endothelial interactions. NETs were also observed in both alveolar space and pulmonary capillaries of the lung. The interactions of NETs with platelet aggregates, leukocyte-platelet aggregates or vascular endothelium of arterioles and venules were observed in the microcirculation of septic mice. Microvessel occlusions which may be caused by platelet aggregates or leukocyte-platelet aggregates and heterogeneously decreased blood flow were also observed in septic mice. NETs appeared to be associated with the formation of platelet aggregates or leukocyte-platelet aggregates. These observational findings may suggest the adverse effect of intravascular NETs on the host during a sepsis.


British Journal of Cancer | 2013

Brain-derived neurotrophic factor/tropomyosin-related kinase B pathway in gastric cancer

Yoshinaga Okugawa; Koji Tanaka; Yasuhiro Inoue; Mikio Kawamura; Aya Kawamoto; Jyunichiro Hiro; Susumu Saigusa; Yuji Toiyama; Masaki Ohi; Keiichi Uchida; Yasuhiko Mohri; Masato Kusunoki

Background:Brain-derived neutrophic factor (BDNF) is a member of the neutrophin family that is known to activate the high-affinity tropomyosin-related receptor kinase B (TrkB). This study aimed to clarify the clinical and biological significance of the BDNF/TrkB pathway in gastric cancer.Methods:We analysed BDNF and TrkB expression in gastric cancer samples by real-time reverse transcription PCR and immunohistochemistry. To investigate the biological role of BDNF/TrkB axis, recombinant human BDNF (rhBDNF) and the Trk antagonist K252a were used for in vitro and in vivo analysis.Results:The BDNF expression at the invasive front of primary tumours was significantly elevated compared with that in the tumour core and adjacent normal mucosa. Increased BDNF expression at the invasive front was significantly correlated with factors reflecting disease progression, and poor prognosis. Increased co-expression of the BDNF/TrkB axis was significantly correlated with poor prognosis. Gastric cancer cells expressed BDNF, and administration of rhBDNF promoted proliferation, migration, invasion, and inhibition of anoikis. These effects were generally inhibited by K252a. In an in vivo assay, BDNF(+)/TrkB(+) gastric cancer cells injected into nude mice established peritoneal dissemination, whereas K252a inhibited tumour growth.Conclusion:The BDNF/TrkB pathway might be deeply involved in gastric cancer disease progression.


Gut | 2016

Novel evidence for an oncogenic role of microRNA-21 in colitis-associated colorectal cancer

Chenzhang Shi; Yongzhi Yang; Yang Xia; Yoshinaga Okugawa; Jun Yang; Yong Liang; Hong-Qi Chen; Peng Zhang; Feng Wang; Huazhong Han; Wen Wu; Renyuan Gao; Christoph Gasche; Huanlong Qin; Yanlei Ma; Ajay Goel

Objective miR-21 was found to be overexpressed in the colon tissues and serum of patients with UC and colorectal cancer (CRC); however, the exact roles of miR-21 in colitis-associated CRC remain unclear. The aim of our study was to investigate the biological mechanisms of miR-21 in colitis-associated colon cancer (CAC). Design miR-21 expression was examined in the tumours of 62 patients with CRC from China and 37 colitis-associated neoplastic tissues from Japan and Austria. The biological functions of miR-21 were studied using a series of in vitro, in vivo and clinical approaches. Results miR-21 levels were markedly upregulated in the tumours of 62 patients with CRC, 22 patients with CAC, and in a mouse model of CAC. Following azoxymethane and dextran sulfate sodium intervention, miR-21-knockout mice showed reduced expression of proinflammatory and procarcinogenic cytokines (interleukin (IL) 6, IL-23, IL-17A and IL-21) and a decrease in the size and number of tumours compared with the control mouse group. The absence of miR-21 resulted in the reduced expression of Ki67 and the attenuated proliferation of tumour cells with a simultaneous increase in E-cadherin and decrease in β-catenin and SOX9 in the tumours of CAC mice. Furthermore, the absence of miR-21 increased the expression of its target gene PDCD4 and subsequently modulated nuclear factor (NF)-κB activation. Meanwhile, miR-21 loss reduced STAT3 and Bcl-2 activation, causing an increase in the apoptosis of tumour cells in CAC mice. Conclusions These observations provide novel evidence for miR-21 blockade to be a key strategy in reducing CAC.

Collaboration


Dive into the Yoshinaga Okugawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ajay Goel

Baylor University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge