Yoshinobu Higuchi
Chugai Pharmaceutical Co.
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yoshinobu Higuchi.
Nature Biotechnology | 2010
Tomoyuki Igawa; Shinya Ishii; Tatsuhiko Tachibana; Atsuhiko Maeda; Yoshinobu Higuchi; Shin Shimaoka; Chifumi Moriyama; Tomoyuki Watanabe; Ryoko Takubo; Yoshiaki Doi; Tetsuya Wakabayashi; Akira Hayasaka; Shoujiro Chugai Seiyaku Kabushiki Kaisha Kadono; Takuya Miyazaki; Kenta Haraya; Yasuo Sekimori; Tetsuo Kojima; Yoshiaki Nabuchi; Yoshinori Aso; Yoshiki Kawabe; Kunihiro Hattori
For many antibodies, each antigen-binding site binds to only one antigen molecule during the antibodys lifetime in plasma. To increase the number of cycles of antigen binding and lysosomal degradation, we engineered tocilizumab (Actemra), an antibody against the IL-6 receptor (IL-6R), to rapidly dissociate from IL-6R within the acidic environment of the endosome (pH 6.0) while maintaining its binding affinity to IL-6R in plasma (pH 7.4). Studies using normal mice and mice expressing human IL-6R suggested that this pH-dependent IL-6R dissociation within the acidic environment of the endosome resulted in lysosomal degradation of the previously bound IL-6R while releasing the free antibody back to the plasma to bind another IL-6R molecule. In cynomolgus monkeys, an antibody with pH-dependent antigen binding, but not an affinity-matured variant, significantly improved the pharmacokinetics and duration of C-reactive protein inhibition. Engineering pH dependency into the interactions of therapeutic antibodies with their targets may enable them to be delivered less frequently or at lower doses.
Bone | 2002
Yasushi Uchiyama; Yoshinobu Higuchi; Shu Takeda; Toshimi Masaki; Ayako Shiraishi; Koh Sato; Noboru Kubodera; Kyoji Ikeda; Etsuro Ogata
Although active vitamin D is used in certain countries for the treatment of osteoporosis, the risk of causing hypercalcemia/hypercalciuria means that there is only a narrow therapeutic window, and this has precluded worldwide approval. The results of our previous animal studies have suggested that the therapeutic effect of active vitamin D on bone loss after estrogen deficiency can be dissociated at least partly from its effect of enhancing intestinal calcium absorption and suppressing parathyroid hormone (PTH) secretion. To test this, we compared the effects of ED-71, a hydroxypropoxy derivative of 1alpha,25-dihydroxyvitamin D3, with orally administered alfacalcidol, on bone mineral density (BMD) and the bone remodeling process as a function of their effects on calcium metabolism and PTH, in a rat ovariectomy (ovx) model of osteoporosis. ED-71 increased bone mass at the lumbar vertebra to a greater extent than alfacalcidol, while enhancing calcium absorption (indicated by urinary calcium excretion) and decreasing serum PTH levels to the same degree as alfacalcidol. ED-71 lowered the biochemical and histological parameters of bone resorption more potently than alfacalcidol, while maintaining bone formation markers. These results suggest that active vitamin D exerts an antiosteoporotic effect by inhibiting osteoclastic bone resorption while maintaining osteoblastic function, and that these anticatabolic/anabolic effects of active vitamin D take place independently of its effects on calcium absorption and PTH. The demonstration that ED-71 is more potent in these properties than alfacalcidol makes it an attractive candidate as an antiosteoporotic drug.
Bioorganic & Medicinal Chemistry | 2009
Akie Homma; Haruhiko Sato; Akira Okamachi; Takashi Emura; Takenori Ishizawa; Tatsuya Kato; Tetsu Matsuura; Shigeo Sato; Tatsuya Tamura; Yoshinobu Higuchi; Tomoyuki Watanabe; Hidetomo Kitamura; Kentaro Asanuma; Tadao Yamazaki; Masahisa Ikemi; Hironoshin Kitagawa; Tadashi Morikawa; Hitoshi Ikeya; Kazuaki Maeda; Koichi Takahashi; Kenji Nohmi; Noriyuki Izutani; Makoto Kanda; Ryochi Suzuki
Hyaluronic acid (HA) provides synovial fluid viscoelasticity and has a lubricating effect. Injections of HA preparations into the knee joint are widely used as osteoarthritis therapy. The current HA products reduce pain but do not fully control inflammation. Oral methotrexate (MTX) has anti-inflammatory efficacy but is associated with severe adverse events. Based on the rationale that a conjugation of HA and MTX would combine the efficacy of the two clinically evaluated agents and avoid the risks of MTX alone, we designed HA-MTX conjugates in which the MTX connects with the HA through peptides susceptible to cleavage by lysosomal enzymes. Intra-articular injection of our HA-MTX conjugate (conjugate 4) produced a significant reduction of the knee swelling in antigen-induced arthritis rat, whereas free MTX, HA or a mixture of HA and MTX showed no or marginal effects on the model. The efficacy of conjugate 4 was almost the same as that of MTX oral treatment. Conjugate 4 has potential as a compound for the treatment of osteoarthritis.
PLOS ONE | 2013
Tomoyuki Igawa; Atsuhiko Maeda; Kenta Haraya; Tatsuhiko Tachibana; Yuki Iwayanagi; Futa Mimoto; Yoshinobu Higuchi; Shinya Ishii; Shigero Tamba; Naoka Hironiwa; Kozue Nagano; Tetsuya Wakabayashi; Hiroyuki Tsunoda; Kunihiro Hattori
Monoclonal antibodies are widely used to target disease-related antigens. However, because conventional antibody binds to the antigen but cannot eliminate the antigen from plasma, and rather increases the plasma antigen concentration by reducing the clearance of the antigen, some clinically important antigens are still difficult to target with monoclonal antibodies because of the huge dosages required. While conventional antibody can only bind to the antigen, some natural endocytic receptors not only bind to the ligands but also continuously eliminate them from plasma by pH-dependent dissociation of the ligands within the acidic endosome and subsequent receptor recycling to the cell surface. Here, we demonstrate that an engineered antibody, named sweeping antibody, having both pH-dependent antigen binding (to mimic the receptor-ligand interaction) and increased binding to cell surface neonatal Fc receptor (FcRn) at neutral pH (to mimic the cell-bound form of the receptor), selectively eliminated the antigen from plasma. With this novel antigen-sweeping activity, antibody without in vitro neutralizing activity exerted in vivo efficacy by directly eliminating the antigen from plasma. Moreover, conversion of conventional antibody with in vitro neutralizing activity into sweeping antibody further potentiated the in vivo efficacy. Depending on the binding affinity to FcRn at neutral pH, sweeping antibody reduced antigen concentration 50- to 1000-fold compared to conventional antibody. Thereby, sweeping antibody antagonized excess amounts of antigen in plasma against which conventional antibody was completely ineffective, and could afford marked reduction of dosage to a level that conventional antibody can never achieve. Thus, the novel mode of action of sweeping antibody provides potential advantages over conventional antibody and may allow access to the target antigens which were previously undruggable by conventional antibody.
Bioorganic & Medicinal Chemistry | 1998
Yoshiyuki Ono; Akira Kawase; Hiroyoshi Watanabe; Ayako Shiraishi; Satoshi Takeda; Yoshinobu Higuchi; Katsuhiko Sato; Tsuyoshi Yamauchi; Tetsuhiro Mikami; Masahiro Kato; Naoko Tsugawa; Toshio Okano; Noboru Kubodera
Analogues related to 1alpha,25-dihydroxy-2beta-(3-hydroxypropoxy)vitamin D3 (ED-71) (2), 26,27-dimethyl ED-71 (3) and 26,27-diethyl ED-71 (4), were synthesized from lithocholic acid (5). In the study of the preventive effects of these analogues and ED-71 (2) on bone mineral loss in ovariectomized rats, 26,27-dimethyl ED-71 (3) showed the most potent activity.
Cytokine | 2011
Misato Hashizume; Yoshinobu Higuchi; Yasushi Uchiyama; Masahiko Mihara
In the present study, we explored the involvement of interleukin-6 (IL-6) in neutrophilia under inflammatory conditions. The neutrophil count in the peripheral blood was high in arthritic monkeys, and anti-IL-6 receptor antibody reduced neutrophil counts to normal levels. IL-6 injection into normal monkeys significantly increased neutrophil counts in the blood 3h after injection. The expression of cluster of differentiation (CD) 162 on circulating neutrophils was reduced by IL-6 injection. IL-6 treatment in vitro did not affect CD162 expression on neutrophils from human blood. In IL-6-treated monkeys, IL-8 and granulocyte-macrophage colony-stimulating factor (GM-CSF) levels in plasma were clearly elevated. IL-8 and GM-CSF treatment in vitro reduced cell-surface CD162 expression on human neutrophils, and moreover, increased soluble CD162 expression in the cell supernatant. The addition of IL-6 into human whole peripheral blood induced IL-8 production and reduced CD162 expression on neutrophils. Furthermore, IL-8 and GM-CSF augmented mRNA expression of a disintegrin and metalloprotease like domain 10 (ADAM10) in neutrophils. Knock-down of ADAM10 by siRNA in neutrophil-like HL-60 cells partially reversed the expression of CD162 reduced by GM-CSF and IL-8 on HL-60 cells. In conclusion, IL-6 induced neutrophilia and reduced CD162 expression on neutrophils in inflammation.
Bioorganic & Medicinal Chemistry | 2010
Akie Homma; Haruhiko Sato; Tatsuya Tamura; Akira Okamachi; Takashi Emura; Takenori Ishizawa; Tatsuya Kato; Tetsu Matsuura; Shigeo Sato; Yoshinobu Higuchi; Tomoyuki Watanabe; Hidetomo Kitamura; Kentaro Asanuma; Tadao Yamazaki; Masahisa Ikemi; Hironoshin Kitagawa; Tadashi Morikawa; Hitoshi Ikeya; Kazuaki Maeda; Koichi Takahashi; Kenji Nohmi; Noriyuki Izutani; Makoto Kanda; Ryohchi Suzuki
We previously reported that a conjugate of hyaluronic acid (HA) and methotrexate (MTX) could be a prototype for future osteoarthritis drugs having the efficacy of the two clinically validated agents but with a reduced risk of the systemic side effects of MTX by using HA as the drug delivery carrier. To identify a clinical candidate, we attempted optimization of a lead, conjugate 1. Initially, in fragmentation experiments with cathepsins, we optimized the peptide part of HA-MTX conjugates to be simpler and more susceptible to enzymatic cleavage. Then we optimized the peptide, the linker, the molecular weight, and the binding ratio of the MTX of the conjugates to inhibit proliferation of human fibroblast-like synoviocytes in vitro and knee swelling in rat antigen-induced monoarthritis in vivo. Consequently, we found conjugate 30 (DK226) to be a candidate drug for the treatment of osteoarthritis.
Scientific Reports | 2013
Otoya Ueda; Hiromi Tateishi; Yoshinobu Higuchi; Etsuko Fujii; Atsuhiko Kato; Yosuke Kawase; Naoko A. Wada; Takanori Tachibe; Mami Kakefuda; Chisato Goto; Makoto Kawaharada; Shin Shimaoka; Kunihiro Hattori; Kou-ichi Jishage
For clinical trials of therapeutic monoclonal antibodies (mAbs) to be successful, their efficacy needs to be adequately evaluated in preclinical experiments. However, in many cases it is difficult to evaluate the candidate mAbs using animal disease models because of lower cross-reactivity to the orthologous target molecules. In this study we have established a novel humanized Castlemans disease mouse model, in which the endogenous interleukin-6 receptor gene is successfully replaced by human IL6R, and human IL6 is overexpressed. We have also demonstrated the therapeutic effects of an antibody that neutralizes human IL6R, tocilizumab, on the symptoms in this mouse model. Plasma levels of human soluble IL6R and human IL6 were elevated after 4-week treatment of tocilizumab in this mouse model similarly to the result previously reported in patients treated with tocilizumab. Our mouse model provides us with a novel means of evaluating the in vivo efficacy of human IL6R-specific therapeutic agents.
Birth Defects Research Part B-developmental and Reproductive Toxicology | 2012
Takayuki Sakurai; Ryo Takai; Heinrich Bürgin; Kana Ishihara; Yuichiro Sakamoto; Jun Amano; Yoshinobu Higuchi; Shuichi Chiba; Thomas Singer; Akinori Kawamura; Masami Suzuki; Lutz Müller
Possible effects of interleukin-6 (IL-6) on reproductive performance, embryonal development, parturition, and postnatal development have been suggested based on protein/mRNA expression level of IL-6 in related organs, but less is known about functions of IL-6 signals in these areas. Following two different approaches have been employed to investigate the role of IL-6 signals in fertility and pre-/postnatal development: administration of a rat anti-mouse IL-6 receptor antibody, MR16-1, to mice as a neutralizing antibody system, and B6.129S2-Il6(tm1Kopf)/J (IL-6 knockout [KO]) mice as a KO system. By intravenously dosing 50 mg/kg of MR16-1 every 3 days, animals in male and female fertility studies and dams in a pre-/postnatal development study exhibited plasma MR16-1 concentrations much higher than the effective plasma concentration, indicating that MR16-1 exposure was sufficient to completely block IL-6 signals. The concentration of MR16-1 in the plasma of fetuses exceeded that in the plasma of pregnant animals, and MR16-1 concentration in milk was about one-fourth of that in plasma. Both the transient IL-6 signal blockade by MR16-1, and the constitutive IL-6 signal inhibition using IL-6 KO mice in a combined fertility and pre-/postnatal development study, revealed no biologically important effects on fertility, early embryonic development to implantation, or pre-/postnatal development, including IgG/IgM production by keyhole limpet hemocyanin sensitization. These results indicate that IL-6 signals have no unique, noncompensable roles in reproduction and development in the whole body system, although contributions of IL-6 in the signaling network appear to exist, as suggested by previously published investigations.
Experimental Dermatology | 2018
Sohei Oyama; Hidetomo Kitamura; Taichi Kuramochi; Yoshinobu Higuchi; Hiroaki Matsushita; Tsukasa Suzuki; Masaaki Goto; Hideki Adachi; Keiko Kasutani; Akihisa Sakamoto; Yuki Iwayanagi; Akihisa Kaneko; Masahiko Nanami; Etsuko Fujii; Keiko Esaki; Yoshiaki Takashima; Shin Shimaoka; Kunihiro Hattori; Yoshiki Kawabe
Scratching is an important factor exacerbating skin lesions through the so‐called itch‐scratch cycle in atopic dermatitis (AD). In mice, interleukin (IL)‐31 and its receptor IL‐31 receptor A (IL‐31RA) are known to play a critical role in pruritus and the pathogenesis of AD; however, study of their precise roles in primates is hindered by the low sequence homologies between primates and mice and the lack of direct evidence of itch sensation by IL‐31 in primates. We showed that administration of cynomolgus IL‐31 induces transient scratching behaviour in cynomolgus monkeys and by that were able to establish a monkey model of scratching. We then showed that a single subcutaneous injection of 1 mg/kg nemolizumab, a humanized anti‐human IL‐31RA monoclonal antibody that also neutralizes cynomolgus IL‐31 signalling and shows a good pharmacokinetic profile in cynomolgus monkeys, suppressed the IL‐31‐induced scratching for about 2 months. These results suggest that the IL‐31 axis and IL‐31RA axis play as critical a role in the induction of scratching in primates as in mice and that the blockade of IL‐31 signalling by an anti‐human IL‐31RA antibody is a promising therapeutic approach for treatment of AD. Nemolizumab is currently under investigation in clinical trials.