Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoshinobu Ohira is active.

Publication


Featured researches published by Yoshinobu Ohira.


BMJ | 1979

Iron-deficiency anaemia and its effect on worker productivity and activity patterns.

V. R. Edgerton; Gerald W. Gardner; Yoshinobu Ohira; K. A. Gunawardena; B. Senewiratne

The effects of iron-deficiency anaemia on workers productivity were studied in a tea plantation in Sri Lanka. The quantity of tea picked per day was studied before and after iron supplementation or placebo treatment. After one months treatment significantly more tea was picked when the haemoglobin (Hb) concentration was increased by iron supplementation than when it was not. The degree of improvement was greater in more-anaemic subjects (those with concentrations of 6.0-9.0 g Hb/dl). The level of physical activity of anaemic subjects in their everyday environment was also recorded for four or 24 hours continuously both before and after treatment. After three weeks these levels was significantly greater in the iron-treated than matched placebo-treated subjects. The economic implications of increased work productively with iron treatment are evident, particularly in developing countries. These results also provide strong evidence for the clinical impression that people with iron-deficiency anaemia suffer from tiredness and weakness.


British Journal of Haematology | 1979

Work capacity, heart rate and blood lactate responses to iron treatment.

Yoshinobu Ohira; V. R. Edgerton; Gerald W. Gardner; B. Senewiratne; R.J. Barnard; D. R. Simpson

Summary. Changes in haemoglobin (Hb), work performance, heart rate and postexercise blood lactate were studied in iron deficient, anaemic subjects for 16 d following total dosage infusion of iron dextran, i.v. (30–50 ml). Six adult men and 14 women were subjects with initial Hb levels of 6.6±0.6 g/dl (mean±SEM) for the iron treatment group (n=10) and 8.0±0.7 for the placebo group (saline infusion, n=10). Serum iron levels were 0.51±0.15 and 0.67±0.12 mg/l for the two groups, respectively. Haemoglobin and maximal work time increased significantly within 4 d after iron treatment and continued to increase up to 16 d. No changes were found in the placebo subjects. Heart rates at a given exercise intensity were lower in the iron treatment group than in control subjects who had the same Hb levels but had not been treated with iron. Post‐exercise venous blood lactate was similar on succeeding days after iron treatement even though the subjects reached higher work loads.


Advances in Space Research | 2002

Gravitational unloading effects on muscle fiber size, phenotype and myonuclear number

Yoshinobu Ohira; Tomoo Yoshinaga; T. Nomura; Kawano F; Akihiko Ishihara; Ikuya Nonaka; Roland R. Roy; V. R. Edgerton

The effects of gravitational unloading with or without intact neural activity and/or tension development on myosin heavy chain (MHC) composition, cross-sectional area (CSA), number of myonuclei, and myonuclear domain (cytoplasmic volume per myonucleus ratio) in single fibers of both slow and fast muscles of rat hindlimbs are reviewed briefly. The atrophic response to unloading is generally graded as follows: slow extensors > fast extensors > fast flexors. Reduction of CSA is usually greater in the most predominant fiber type of that muscle. The percentage of fibers expressing fast MHC isoforms increases in unloaded slow but not fast muscles. Myonuclear number per mm of fiber length and myonuclear domain is decreased in the fibers of the unloaded predominantly slow soleus muscle, but not in the predominantly fast plantaris. Decreases in myonuclear number and domain, however, are observed in plantaris fibers when tenotomy, denervation, or both are combined with hindlimb unloading. All of these results are consistent with the view that a major factor for fiber atrophy is an inhibition or reduction of loading of the hindlimbs. These data also indicate that predominantly slow muscles are more responsive to unloading than predominantly fast muscles.


PLOS ONE | 2012

Adaptation of Mouse Skeletal Muscle to Long-Term Microgravity in the MDS Mission

Dorianna Sandonà; Jean-François Desaphy; Giulia Maria Camerino; Elisa Bianchini; Stefano Ciciliot; Daniela Danieli-Betto; Gabriella Dobrowolny; Sandra Furlan; Elena Germinario; Katsumasa Goto; Martina Gutsmann; Fuminori Kawano; Naoya Nakai; Takashi Ohira; Yoshitaka Ohno; Anne Picard; Michele Salanova; Gudrun Schiffl; Dieter Blottner; Antonio Musarò; Yoshinobu Ohira; Romeo Betto; Diana Conte; Stefano Schiaffino

The effect of microgravity on skeletal muscles has so far been examined in rat and mice only after short-term (5–20 day) spaceflights. The mice drawer system (MDS) program, sponsored by Italian Space Agency, for the first time aimed to investigate the consequences of long-term (91 days) exposure to microgravity in mice within the International Space Station. Muscle atrophy was present indistinctly in all fiber types of the slow-twitch soleus muscle, but was only slightly greater than that observed after 20 days of spaceflight. Myosin heavy chain analysis indicated a concomitant slow-to-fast transition of soleus. In addition, spaceflight induced translocation of sarcolemmal nitric oxide synthase-1 (NOS1) into the cytosol in soleus but not in the fast-twitch extensor digitorum longus (EDL) muscle. Most of the sarcolemmal ion channel subunits were up-regulated, more in soleus than EDL, whereas Ca2+-activated K+ channels were down-regulated, consistent with the phenotype transition. Gene expression of the atrophy-related ubiquitin-ligases was up-regulated in both spaceflown soleus and EDL muscles, whereas autophagy genes were in the control range. Muscle-specific IGF-1 and interleukin-6 were down-regulated in soleus but up-regulated in EDL. Also, various stress-related genes were up-regulated in spaceflown EDL, not in soleus. Altogether, these results suggest that EDL muscle may resist to microgravity-induced atrophy by activating compensatory and protective pathways. Our study shows the extended sensitivity of antigravity soleus muscle after prolonged exposition to microgravity, suggests possible mechanisms accounting for the resistance of EDL, and individuates some molecular targets for the development of countermeasures.


Acta Physiologica | 2008

Cellular adaptations in soleus muscle during recovery after hindlimb unloading

Tomonori Ogata; Yamamoto K; Masahiro Terada; Takashi Ohira; Yoshinobu Ohira; Kouhachi Taniguchi; Roland R. Roy

Aim:  We used a model of chronic unloading followed by reloading to examine the apoptotic responses associated with soleus muscle atrophy and subsequent recovery.


Neuroscience Research | 2004

Effects of running exercise during recovery from hindlimb unloading on soleus muscle fibers and their spinal motoneurons in rats

Akihiko Ishihara; Fuminori Kawano; Noriaki Ishioka; Hirotaka Oishi; Akira Higashibata; Toru Shimazu; Yoshinobu Ohira

The effects of hindlimb unloading and recovery with or without running exercise on morphological and metabolic properties of soleus muscle fibers and their spinal motoneurons in rats were investigated. Ten-week-old rats were hindlimb suspended for 2 weeks and thereafter were rehabilitated with or without voluntary running exercise for 2 weeks. A decreased percentage of type I fibers and atrophy of all types of fibers were observed after hindlimb unloading. In addition, decreased oxidative enzyme activity of all types of fibers was observed after hindlimb unloading. In contrast, an improvement in the decreased percentage of type I fibers, decreased fiber cross-sectional area, and decreased fiber oxidative enzyme activity was observed after recovery with running exercise, but not without running exercise. There were no changes in the number, cell body size, or oxidative enzyme activity of motoneurons innervating the soleus muscle after hindlimb unloading or recovery with or without running exercise. These results indicate that running exercise is beneficial for the recovery of the decreased percentage of type I fibers and the atrophy and decreased oxidative enzyme activity of all types of fibers in the soleus muscle induced by hindlimb unloading and that there are no changes in morphological or metabolic properties of spinal motoneurons innervating the soleus muscle following decreased or increased neuromuscular activity.


Neuroscience | 2002

Afferent input-associated reduction of muscle activity in microgravity environment

Fuminori Kawano; Takeshi Nomura; Akihiko Ishihara; Ikuya Nonaka; Yoshinobu Ohira

Responses of electromyogram (EMG) of soleus, lateral portion of gastrocnemius (LG) and tibialis anterior (TA), and both afferent and efferent neurograms at the L(5) segmental level of the spinal cord, to altered gravity levels created by the parabolic flight of a jet airplane were investigated in adult rats. The EMG activity in antigravity soleus muscle gradually increased when the gravity was elevated from 1-G to 1.5-G (+23%) and 2-G (+67%) during the ascending phase of parabolic flight. The activity decreased approximately 72% from the 1-G level immediately when the rat was exposed to microgravity. The EMG level was maintained low during the 20-s microgravity, but it was restored immediately once the gravity level was increased to 1.5-G and then 1-G during the descending and recovery phase. The EMG level of LG also increased gradually when the gravity level was elevated and the level then decreased when the rat was exposed to microgravity (P>0.05). However, the activity level during the 20-s microgravity was identical to that obtained at 1-G. The EMG level of TA even increased insignificantly in response to the exposure to microgravity. The responses of afferent neurogram were similar to those of soleus EMG, even though the magnitude of the reduction of integrated neurogram level in response to microgravity exposure was small (approximately 26% vs. 1-G level) relative to that of soleus EMG. The level of efferent neurogram was also decreased, but only approximately 9% vs. 1-G level, during the 20-s microgravity. The data in the current study suggest that the afferent input is closely associated with the gravity-dependent muscular activity.


American Journal of Physiology-cell Physiology | 2008

Essential role of satellite cells in the growth of rat soleus muscle fibers

Fuminori Kawano; Yoshiaki Takeno; Naoya Nakai; Yoko Higo; Masahiro Terada; Takashi Ohira; Ikuya Nonaka; Yoshinobu Ohira

Effects of gravitational loading or unloading on the growth-associated increase in the cross-sectional area and length of fibers, as well as the total fiber number, in soleus muscle were studied in rats. Furthermore, the roles of satellite cells and myonuclei in growth of these properties were also investigated. The hindlimb unloading by tail suspension was performed in newborn rats from postnatal day 4 to month 3 with or without 3-mo reloading. The morphological properties were measured in whole muscle and/or single fibers sampled from tendon to tendon. Growth-associated increases of soleus weight and fiber cross-sectional area in the unloaded group were approximately 68% and 69% less than the age-matched controls. However, the increases of number and length of fibers were not influenced by unloading. Growth-related increases of the number of quiescent satellite cells and myonuclei were inhibited by unloading. And the growth-related decrease of mitotically active satellite cells, seen even in controls (20%, P > 0.05), was also stimulated (80%). The increase of myonuclei during 3-mo unloading was only 40 times vs. 92 times in controls. Inhibited increase of myonuclear number was not related to apoptosis. The size of myonuclear domain in the unloaded group was less and that of single nuclei, which was decreased by growth, was larger than controls. However, all of these parameters, inhibited by unloading, were increased toward the control levels generally by reloading. It is suggested that the satellite cell-related stimulation in response to gravitational loading plays an essential role in the cross-sectional growth of soleus muscle fibers.


Journal of The Autonomic Nervous System | 2000

Effects of three days of dry immersion on muscle sympathetic nerve activity and arterial blood pressure in humans.

Satoshi Iwase; Yoshiki Sugiyama; Chihiro Miwa; Atsunori Kamiya; Tadaaki Mano; Yoshinobu Ohira; Boris Shenkman; Anatoly I Egorov; Inessa B. Kozlovskaya

The present study was performed to determine how sympathetic function is altered by simulated microgravity, dry immersion for 3 days, and to elucidate the mechanism of post-spaceflight orthostatic intolerance in humans. Six healthy men aged 21-36 years old participated in the study. Before and after the dry immersion, subjects performed head-up tilt (HUT) test to 30 degrees and 60 degrees (5 min each) with recordings of muscle sympathetic nerve activity (MSNA, by microneurography), electrocardiogram, and arterial blood pressure (Finapres). Resting MSNA was increased after dry immersion from 23.7+/-3.2 to 40.9+/-3.0 bursts/min (p<0.005) without significant changes in resting heart rate (HR). MSNA responsiveness to orthostasis showed no significant difference but HR response was significantly augmented after dry immersion (p<0. 005). A significant diastolic blood pressure fall at 5th min of 60 degrees HUT was observed in five orthostatic tolerant subjects despite enough MSNA discharge after dry immersion. A subject suffered from presyncope at 2 min after 60 degrees HUT. He showed gradual blood pressure fall 10 s after 60 degrees HUT with initially well-maintained MSNA response and then with a gradually attenuated MSNA, followed by a sudden MSNA withdrawal and abrupt blood pressure drop. In conclusion, dry immersion increased MSNA without changing MSNA response to orthostasis, and resting HR, while increasing the HR response to orthostasis. Analyses of MSNA and blood pressure changes in orthostatic tolerant subjects and a subject with presyncope suggested that not only insufficient vasoconstriction to sympathetic stimuli, but also a central mechanism to induce a sympathetic withdrawal might play a role in the development of orthostatic intolerance after microgravity exposure.


Cells Tissues Organs | 2006

The Role of Neural and Mechanical Influences in Maintaining Normal Fast and Slow Muscle Properties

Yoshinobu Ohira; Tomoo Yoshinaga; Makoto Ohara; Fuminori Kawano; Xiao Dong Wang; Yoko Higo; Masahiro Terada; Yoshikazu Matsuoka; Roland R. Roy; V. Reggie Edgerton

The relative importance of neural and mechanical influences in maintaining normal slow and fast muscle properties remains unclear. To address this issue, we studied the effects of 10 days of hindlimb unloading (HU) with or without tenotomy and/or denervation on the cross-sectional area (CSA), myosin heavy chain (MHC) expression (immunohistochemistry) and composition (gel electrophoresis), and myonuclear number in soleus and plantaris fibers in adult male Wistar rats. In general, the adaptations in fiber type and size were similar using either single fiber gel or immunohistochemical analyses. HU resulted in atrophy of type I and I+IIa/x MHC fibers in the soleus and in type I, I+IIa/x, IIa/x, IIa/x+IIb, and IIb MHC fibers in the plantaris. Addition of tenotomy and/or denervation in HU rats had minimal effects on fiber CSA in the soleus, but fiber CSA in the plantaris further decreased, particularly in fibers expressing only fast MHCs. HU resulted in a de novo appearance of type I+IIa/x+IIb and IIa/x+IIb MHC fibers in the soleus and of type I+IIa/x+IIb MHC fibers in the plantaris.Tenotomy and/or denervation in HU rats had no further effect on the fiber type composition of either muscle. Mean myonuclear number/mm of type I fibers was decreased in the soleus of HU rats, and increased in type I and I+IIa/x fibers in HU plus tenotomy (HU+Ten) rats. In the plantaris, mean myonuclear number/mm of type IIa/x, IIa/x+IIb, and IIb fibers was lower after HU with or without tenotomy and/or denervation. Mean cytoplasmic volume/myonucleus ratio of type I and I+IIa/x fibers in the soleus of the HU group tended to be smaller than in controls. The largest decrease was noted in the HU+Ten group. In the plantaris, this ratio was unaffected by HU alone, but was decreased by addition of tenotomy and/or denervation when all fiber types were combined. These data indicate that the major cause of fiber atrophy and adaptations in myonuclear domain size in the slow soleus of HU rats is the chronic reduction in force generation, whereas the elimination of neuromuscular contact via denervation results in additional fiber atrophy and adaptations in myonuclear domain size in the fast plantaris.

Collaboration


Dive into the Yoshinobu Ohira's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roland R. Roy

University of California

View shared research outputs
Top Co-Authors

Avatar

V. R. Edgerton

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge