Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoshinori Asou is active.

Publication


Featured researches published by Yoshinori Asou.


Nature | 2013

Sema3A regulates bone-mass accrual through sensory innervations

Toru Fukuda; Shu Takeda; Ren Xu; Hiroki Ochi; Satoko Sunamura; Tsuyoshi Sato; Shinsuke Shibata; Yutaka Yoshida; Zirong Gu; Ayako Kimura; Chengshan Ma; Cheng Xu; Waka Bando; Koji Fujita; Kenichi Shinomiya; Takashi Hirai; Yoshinori Asou; Mitsuhiro Enomoto; Hideyuki Okano; Atsushi Okawa; Hiroshi Itoh

Semaphorin 3A (Sema3A) is a diffusible axonal chemorepellent that has an important role in axon guidance. Previous studies have demonstrated that Sema3a−/− mice have multiple developmental defects due to abnormal neuronal innervations. Here we show in mice that Sema3A is abundantly expressed in bone, and cell-based assays showed that Sema3A affected osteoblast differentiation in a cell-autonomous fashion. Accordingly, Sema3a−/− mice had a low bone mass due to decreased bone formation. However, osteoblast-specific Sema3A-deficient mice (Sema3acol1−/− and Sema3aosx−/− mice) had normal bone mass, even though the expression of Sema3A in bone was substantially decreased. In contrast, mice lacking Sema3A in neurons (Sema3asynapsin−/− and Sema3anestin−/− mice) had low bone mass, similar to Sema3a−/− mice, indicating that neuron-derived Sema3A is responsible for the observed bone abnormalities independent of the local effect of Sema3A in bone. Indeed, the number of sensory innervations of trabecular bone was significantly decreased in Sema3asynapsin−/− mice, whereas sympathetic innervations of trabecular bone were unchanged. Moreover, ablating sensory nerves decreased bone mass in wild-type mice, whereas it did not reduce the low bone mass in Sema3anestin−/− mice further, supporting the essential role of the sensory nervous system in normal bone homeostasis. Finally, neuronal abnormalities in Sema3a−/− mice, such as olfactory development, were identified in Sema3asynasin−/− mice, demonstrating that neuron-derived Sema3A contributes to the abnormal neural development seen in Sema3a−/− mice, and indicating that Sema3A produced in neurons regulates neural development in an autocrine manner. This study demonstrates that Sema3A regulates bone remodelling indirectly by modulating sensory nerve development, but not directly by acting on osteoblasts.


Journal of Orthopaedic Research | 2002

Coordinated expression of scleraxis and Sox9 genes during embryonic development of tendons and cartilage

Yoshinori Asou; Akira Nifuji; Kunikazu Tsuji; Kenichi Shinomiya; Eric N. Olson; Peter Koopman; Masaki Noda

Embryonic development of tendons is in close association with that of cartilage and bone. Although these tissues are derived from mesenchymal progenitor cells which also give rise to muscle and fat, their fates clearly diverse in early embryonic stages. Transcription factors may play pivotal roles in the process of determination and differentiation of tendon cells as well as other cells in the skeletal system. Scleraxis, a basic helix‐loop‐helix (bHLH) type transcription factor, is expressed in mesenchymal progenitors that later form connective tissues including tendons. Sox9 is an HMG‐box containing transcription factor, which is expressed at high levels in chondrocytes. We hypothesized that the two transcription factors regulate the fate of cells that interact with each other at the interface between the two tissues during divergence of their differentiation pathways. To address this point, we investigated scleraxis and Sox9 mRNA expression during mouse embyogenesis focusing on the coordinated development of tendons and skeletons. In the early stage of mesenchymal tissue development at 10.5 d.p.c., scleraxis and Sox9 transcripts were expressed in the mesenchymal progenitor cells in the appendicular and axial mesenchyme. At 11.5 d.p.c., scleraxis transcripts were observed in the mesenchymal tissue surrounding skeletal primordia which express Sox9. From this stage, scleraxis expression was closely associated with, but distinct from, formation of skeletal primordia. At 13.5 d.p.c., scleraxis was expressed broadly in the interface between muscle and skeletal primordia while Sox9 expression is confined within the early skeletal primordia. Then, at 15.5 d. p.c., scleraxis transcripts were more restricted to tendons. These observations revealed the presence of temporal and spatial association of scleraxis expression during embryonic development of tendon precursor cells in close association with that of Sox9 expression in chondrogenic cells in skeletal tissues.


PLOS ONE | 2013

Initial Responses of Articular Tissues in a Murine High-Fat Diet-Induced Osteoarthritis Model: Pivotal Role of the IPFP as a Cytokine Fountain

Munetaka Iwata; Hiroki Ochi; Yasushi Hara; Masahiro Tagawa; Daisuke Koga; Atsushi Okawa; Yoshinori Asou

Obesity and high body mass index are associated with a higher incidence of osteoarthritis (OA). The aim of this study is to investigate the involvement of the infrapatellar fat pad (IPFP) in the sub-acute effect of a high fat diet (HFD) on the development of knee-OA. C57BL/6J male mice were fed either a HFD or a normal diet beginning at seven weeks of age. Tissue sections were evaluated with immunohistological analysis. The IPFP was excised, and mRNA expression profiles were compared using real-time RT-PCR analysis. Osteoarthritic changes were initiated in the HFD group after eight weeks of the HFD. Increased synovial cell number and angiogenesis at the anterior edge of the tibial plateau were exhibited prior to osteophyte formation. Quantitative histological analysis indicated that osteophyte volume was significantly increased in the HFD group after eight weeks, along with an increase in the IPFP volume, the size of individual adipocytes and the number of vessels in the IPFP. Histomorphometrical analysis revealed osteophyte area was significantly associated with IPFP area, individual adipocyte area and vascular area. Real-time RT-PCR analysis demonstrated elevated mRNA expression of inflammatory cytokines, growth factor, and adipokines in the IPFP after eight weeks of the HFD. These findings are in parallel with increased expression of the CD68 macrophage marker after eight weeks of the HFD. Expression levels of the adipokines were significantly correlated with expression of TNF-α, VEGF and TGF-β. Immunohistological analysis revealed that the Nampt protein was highly expressed in the IPFP especially around the site of osteophyte formation. Apoptosis and proliferation of chondrocytes were both enhanced at the site of osteophyte formation, indicating higher cell turnover at this region. These observations suggest the IPFP plays a pivotal role in the formation of osteophytes and functions as a secretory organ in response to a HFD.


Arthritis & Rheumatism | 2008

The distinct role of the Runx proteins in chondrocyte differentiation and intervertebral disc degeneration: Findings in murine models and in human disease

Shingo Sato; Ayako Kimura; Jerfi Ozdemir; Yoshinori Asou; Makiko Miyazaki; Tetsuya Jinno; Keisuke Ae; Xiuyun Liu; Mitsuhiko Osaki; Yasuhiro Takeuchi; Seiji Fukumoto; Hiroshi Kawaguchi; Hirotaka Haro; Kenichi Shinomiya; Gerard Karsenty; Shu Takeda

OBJECTIVE Runx2 is a transcription factor that regulates chondrocyte differentiation. This study was undertaken to address the role of the different Runx proteins (Runx1, Runx2, or Runx3) in chondrocyte differentiation using chondrocyte-specific Runx-transgenic mice, and to study the importance of the QA domain of Runx2, which is involved in its transcriptional activation. METHODS Runx expression was analyzed in the mouse embryo by in situ hybridization. Overexpression of Runx1, Runx2 (lacking the QA domain [DeltaQA]), or Runx3 was induced in chondrocytes in vivo, to produce alpha(1)II-Runx1, alpha(1)II-Runx2DeltaQA, and alpha(1)II-Runx3 mice, respectively, for histologic and molecular analyses. Runx expression was also examined in an experimental mouse model of mechanical stress-induced intervertebral disc (IVD) degeneration and in human patients with IVD degeneration. RESULTS Runx1 expression was transiently observed in condensations of mesenchymal cells, whereas Runx2 and Runx3 were robustly expressed in prehypertrophic chondrocytes. Similar to alpha(1)II-Runx2 mice, alpha(1)II-Runx2DeltaQA and alpha(1)II-Runx3 mice developed ectopic mineralization of cartilage, but this was less severe in the alpha(1)II-Runx2DeltaQA mice. In contrast, alpha(1)II-Runx1 mice displayed no signs of ectopic mineralization. Surprisingly, alpha(1)II-Runx1 and alpha(1)II-Runx2 mice developed scoliosis due to IVD degeneration, characterized by an accumulation of extracellular matrix and ectopic chondrocyte hypertrophy. During mouse embryogenesis, Runx2, but not Runx1 or Runx3, was expressed in the IVDs. Moreover, both in the mouse model of IVD degeneration and in human patients with IVD degeneration, there was significant up-regulation of Runx2 expression. CONCLUSION Each Runx protein has a distinct, yet overlapping, role during chondrocyte differentiation. Runx2 contributes to the pathogenesis of IVD degeneration.


Scientific Reports | 2013

Sirt6 regulates postnatal growth plate differentiation and proliferation via Ihh signaling

Jinying Piao; Kunikazu Tsuji; Hiroki Ochi; Munetaka Iwata; Daisuke Koga; Atsushi Okawa; Sadao Morita; Shu Takeda; Yoshinori Asou

Sirtuin 6 (Sirt6) is a mammalian homologue of NAD+-dependent histone deacetylase Sir2. Although Sirt6−/− mice exhibit growth retardation, the role of Sirt6 in cartilage metabolism is unclear. The aim of this study was to investigate the Sirt6 signaling pathway in cartilage metabolism. Immunohistological evaluation of the tibial growth plate in Sirt6−/− mice exhibited impaired proliferation and differentiation of chondrocytes, reduced expression of Indian hedgehog (Ihh), and a senescent phenotype. When Sirt6 was knocked down in chondrocytes in vitro, expression of Ihh and its downstream genes were reduced. Impaired differentiation by Sirt6 silencing was completely rescued by administration of a Hh signal agonist. When sirtuins were activated, chondrocyte differentiation was enhanced together with activation of Ihh signal, and these effects were abrogated by Sirt6 silencing. ChIP assay revealed the affinity of ATF4 to the Ihh promoter was markedly decreased by Sirt6 knockdown. These data indicate Sirt6 directly controls proliferation and differentiation of chondrocytes.


Journal of Bone and Mineral Research | 2013

Cytoplasmic reactive oxygen species and SOD1 regulate bone mass during mechanical unloading.

Daichi Morikawa; Hidetoshi Nojiri; Yoshitomo Saita; Keiji Kobayashi; Kenji Watanabe; Yusuke Ozawa; Masato Koike; Yoshinori Asou; Tomoiku Takaku; Kazuo Kaneko; Takahiko Shimizu

Oxidative stress contributes to the pathogenesis of age‐related diseases as well as bone fragility. Our previous study demonstrated that copper/zinc superoxide dismutase (Sod1)‐deficient mice exhibit the induction of intracellular reactive oxygen species (ROS) and bone fragility resulting from low‐turnover bone loss and impaired collagen cross‐linking (Nojiri et al. J Bone Miner Res. 2011;26:2682–94). Mechanical stress also plays an important role in the maintenance of homeostasis in bone tissue. However, the molecular links between oxidative and mechanical stresses in bone tissue have not been fully elucidated. We herein report that mechanical unloading significantly increased intracellular ROS production and the specific upregulation of Sod1 in bone tissue in a tail‐suspension experiment. We also reveal that Sod1 loss exacerbated bone loss via reduced osteoblastic abilities during mechanical unloading. Interestingly, we found that the administration of an antioxidant, vitamin C, significantly attenuated bone loss during unloading. These results indicate that mechanical unloading, in part, regulates bone mass via intracellular ROS generation and the Sod1 expression, suggesting that activating Sod1 may be a preventive strategy for ameliorating mechanical unloading–induced bone loss.


PLOS ONE | 2012

Procyanidin B3 Prevents Articular Cartilage Degeneration and Heterotopic Cartilage Formation in a Mouse Surgical Osteoarthritis Model

Hailati Aini; Hiroki Ochi; Munetaka Iwata; Atsushi Okawa; Daisuke Koga; Mutsumi Okazaki; Atsushi Sano; Yoshinori Asou

Osteoarthritis (OA) is a common disease in the elderly due to an imbalance in cartilage degradation and synthesis. Heterotopic ossification (HO) occurs when ectopic masses of endochondral bone form within the soft tissues around the joints and is triggered by inflammation of the soft tissues. Procyanidin B3 (B3) is a procyanidin dimer that is widely studied due to its high abundance in the human diet and antioxidant activity. Here, we evaluated the role of B3 isolated from grape seeds in the maintenance of chondrocytes in vitro and in vivo. We observed that B3 inhibited H2O2-induced apoptosis in primary chondrocytes, suppressed H2O2- or IL-1ß−induced nitric oxide synthase (iNOS) production, and prevented IL-1ß−induced suppression of chondrocyte differentiation marker gene expression in primary chondrocytes. Moreover, B3 treatment enhanced the early differentiation of ATDC5 cells. To examine whether B3 prevents cartilage destruction in vivo, OA was surgically induced in C57BL/6J mice followed by oral administration of B3 or vehicle control. Daily oral B3 administration protected articular cartilage from OA and prevented chondrocyte apoptosis in surgically-induced OA joints. Furthermore, B3 administration prevented heterotopic cartilage formation near the surgical region. iNOS protein expression was enhanced in the synovial tissues and the pseudocapsule around the surgical region in OA mice fed a control diet, but was reduced in mice that received B3. Together, these data indicated that in the OA model, B3 prevented OA progression and heterotopic cartilage formation, at least in a part through the suppression of iNOS. These results support the potential therapeutic benefits of B3 for treatment of human OA and heterotopic ossification.


Arthritis & Rheumatism | 2010

Osteopontin deficiency impairs wear debris–induced osteolysis via regulation of cytokine secretion from murine macrophages

Sadanori Shimizu; Naoki Okuda; Norihiko Kato; Susan R. Rittling; Atsushi Okawa; Kenichi Shinomiya; David T. Denhardt; Masaki Noda; Kunikazu Tsuji; Yoshinori Asou

OBJECTIVE To investigate the molecular mechanisms underlying particle-induced osteolysis, we focused on osteopontin (OPN), a cytokine and cell-attachment protein that is associated with macrophage chemoattractant and osteoclast activation. METHODS We compared OPN protein levels in human periprosthetic osteolysis tissues with those in osteoarthritis (OA) synovial tissues. To investigate the functions of OPN during particle-induced osteolysis in vivo, titanium particles were implanted onto the calvaria of OPN-deficient mice and their wild-type (WT) littermates. Mice were killed on day 10 and evaluated immunohistologically. The effects of OPN deficiency on the secretion of inflammatory cytokines were examined using cultured bone marrow-derived macrophages (BMMs). BMMs from OPN-deficient and WT mice were cultured with titanium particles for 12 hours, and the concentrations of inflammatory cytokines in the conditioned media were measured by enzyme-linked immunosorbent assay. RESULTS Expression of OPN protein was enhanced in human periprosthetic osteolysis tissues as compared with OA synovial tissues. In the particle-induced model of osteolysis of the calvaria, bone resorption was significantly suppressed by OPN deficiency via inhibition of osteoclastogenesis, whereas an inflammatory reaction was observed regardless of the genotype. Results of immunostaining indicated that OPN protein was highly expressed in the membrane and bone surface at the area of bone resorption in WT mice. When BMMs were exposed to titanium particles, the concentration of proinflammatory cytokines, such as tumor necrosis factor alpha, interleukin-1alpha (IL-1alpha), IL-1beta, and IL-6, as well as chemotactic factors, such as monocyte chemoattractant protein 1 and macrophage inflammatory protein 1alpha, in the conditioned medium were significantly reduced by OPN deficiency. Whereas phagocytic activity of BMMs was not attenuated by OPN deficiency, phagocytosis-mediated NF-kappaB activation was impaired in OPN-deficient BMMs. These data indicated that OPN was implicated in the development of particle-induced osteolysis via the orchestration of pro-/antiinflammatory cytokines secreted from macrophages. CONCLUSION OPN plays critical roles in wear debris-induced osteolysis, suggesting that OPN is a candidate therapeutic target for periprosthetic osteolysis.


Scientific Reports | 2015

Mitochondrial superoxide in osteocytes perturbs canalicular networks in the setting of age-related osteoporosis

Keiji Kobayashi; Hidetoshi Nojiri; Yoshitomo Saita; Daichi Morikawa; Yusuke Ozawa; Kenji Watanabe; Masato Koike; Yoshinori Asou; Takuji Shirasawa; Koutaro Yokote; Kazuo Kaneko; Takahiko Shimizu

Osteocytes are major bone cells that play a crucial role in maintaining the quality of and healing damage to bone tissue. The number of living osteocytes and canalicular networks declines in an age-dependent manner. However, the pathological effects of mitochondrial redox imbalances on osteocytes and bone metabolism have not been fully elucidated. We generated mice lacking mitochondrial superoxide dismutase 2 (Sod2) in osteocytes. Like an aged bone, Sod2 depletion in the osteocytes positively enhanced the production of cellular superoxide in vivo. A bone morphological analysis demonstrated that the Sod2-deficient femurs showed remarkable bone loss in an age-dependent manner. Interestingly, Sod2 loss induced markedly disorganized osteocytic canalicular networks and decreased the number of live osteocytes. Furthermore, Sod2 deficiency significantly suppressed bone formation and increased bone resorption concomitant with the upregulation of sclerostin and receptor activator of NF-κB ligand (RANKL). In vitro experiments also revealed that treatment with paraquat, a superoxide inducer in mitochondria, promoted the RANKL expression via, in part, ERK phosphorylation. These findings demonstrate that the mitochondrial superoxide induced in osteocytes by Sod2 ablation causes age-related bone loss due to the impairment of canalicular networks and bone metabolism via the deregulation of the sclerostin and RANKL expression.


American Journal of Veterinary Research | 2011

Effects of long-term administration of carprofen on healing of a tibial osteotomy in dogs.

Hiroki Ochi; Yasushi Hara; Yoshinori Asou; Yasuji Harada; Yoshinori Nezu; Takuya Yogo; Kenichi Shinomiya; Masahiro Tagawa

OBJECTIVE To evaluate effects of long-term administration of carprofen on healing of a tibial osteotomy in dogs. ANIMALS 12 healthy female Beagles. PROCEDURES A mid-diaphyseal transverse osteotomy (stabilized with an intramedullary pin) of the right tibia was performed in each dog. The carprofen group (n = 6 dogs) received carprofen (2.2 mg/kg, PO, q 12 h) for 120 days; the control group (6) received no treatment. Bone healing and change in callus area were assessed radiographically over time. Dogs were euthanized 120 days after surgery, and tibiae were evaluated biomechanically and histologically. RESULTS The osteotomy line was not evident in the control group on radiographs obtained 120 days after surgery. In contrast, the osteotomy line was still evident in the carprofen group. Callus area was significantly less in the carprofen group, compared with the area in the control group, at 20, 30, and 60 days after surgery. At 120 days after surgery, stiffness, elastic modulus, and flexural rigidity in the carprofen group were significantly lower than corresponding values in the control group. Furthermore, histologic evaluation revealed that the cartilage area within the callus in the carprofen group was significantly greater than that in the control group. CONCLUSIONS AND CLINICAL RELEVANCE Long-term administration of carprofen appeared to inhibit bone healing in dogs that underwent tibial osteotomy. We recommend caution for carprofen administration when treating fractures that have delays in healing associated with a reduction in osteogenesis as well as fractures associated with diseases that predispose animals to delays of osseous repair.

Collaboration


Dive into the Yoshinori Asou's collaboration.

Top Co-Authors

Avatar

Atsushi Okawa

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Hiroki Ochi

Nippon Veterinary and Life Science University

View shared research outputs
Top Co-Authors

Avatar

Kenichi Shinomiya

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Daisuke Koga

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Yasushi Hara

Nippon Veterinary and Life Science University

View shared research outputs
Top Co-Authors

Avatar

Munetaka Iwata

Nippon Veterinary and Life Science University

View shared research outputs
Top Co-Authors

Avatar

Jinying Piao

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Shu Takeda

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Masahiro Tagawa

Nippon Veterinary and Life Science University

View shared research outputs
Top Co-Authors

Avatar

Kunikazu Tsuji

Tokyo Medical and Dental University

View shared research outputs
Researchain Logo
Decentralizing Knowledge