Yoshinori Kanayama
Tohoku University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yoshinori Kanayama.
Plant Physiology | 2002
Saori Odanaka; Alan B. Bennett; Yoshinori Kanayama
There are two divergent fructokinase isozymes, Frk1 and Frk2 in tomato (Lycopersicon esculentum Mill.) plants. To investigate the physiological functions of each isozyme, the expression of each fructokinase mRNA was independently suppressed in transgenic tomato plants, and the respective phenotypes were evaluated. Suppression of Frk1 expression resulted in delayed flowering at the first inflorescence. Suppression ofFrk2 did not effect flowering time but resulted in growth inhibition of stems and roots, reduction of flower and fruit number, and reduction of seed number per fruit. Localization ofFrk1 and Frk2 mRNA accumulation by in situ hybridization in wild-type tomato fruit tissue indicated thatFrk2 is expressed specifically in early tomato seed development. Fruit hexose and starch content were not effected by the suppression of either Frk gene alone. The results collectively indicate that flowering time is specifically promoted by Frk1 and that Frk2 plays specific roles in contributing to stem and root growth and to seed development. Because Frk1 andFrk2 gene expression was suppressed individually in transgenic plants, other significant metabolic roles of fructokinases may not have been observed if Frk1 and Frk2 play, at least partially, redundant metabolic roles.
Plant Physiology | 1997
Yoshinori Kanayama; Nir Dai; David Granot; Marina Petreikov; Arthur A. Schaffer; Alan B. Bennett
Two cDNA clones (Frk1 and Frk2) encoding fructokinase (EC 2.7.1.4) were isolated from tomato (Lycopersicon esculentum). The Frk2 cDNA encoded a deduced protein of 328 amino acids that was more than 90% identical with a previously characterized potato (Solanum tuberosum) fructokinase. In contrast, the Frk1 cDNA encoded a deduced protein of 347 amino acids that shared only 55% amino acid identity with Frk2. Both deduced proteins possessed an ATP-binding motif and putative substrate recognition site sequences identified in bacterial fructokinases. The Frk1 cDNA was expressed in a mutant yeast (Saccharomyces cerevisiae) line, which lacks the ability to phosphorylate glucose and fructose and is unable to grow on glucose or fructose. Mutant cells expressing Frk1 were complemented to grow on fructose but not glucose, indicating that Frk1 phosphorylates fructose but not glucose, and this activity was verified in extracts of transformed yeast. The mRNA corresponding to Frk2 accumulated to high levels in young, developing tomato fruit, whereas the Frk1 mRNA accumulated to higher levels late in fruit development. The results indicate that fructokinase in tomato is encoded by two divergent genes, which exhibit a differential pattern of expression during fruit development.
Molecular Plant-microbe Interactions | 2007
Daisuke Hondo; Shu Hase; Yoshinori Kanayama; Nobuyuki Yoshikawa; Shigehito Takenaka; Hideki Takahashi
The expression of LeATL6, an ortholog of Arabidopsis ATL6 that encodes a RING-H2 finger protein, was induced in tomato roots treated with a cell wall protein fraction (CWP) elicitor of the biocontrol agent Pythium oligandrum. The LeATL6 protein was expressed as a fusion protein with a maltose-binding protein (MBP) in Escherichia coli, and it catalyzed the transfer of ubiquitin to the MBP moiety on incubation with ubiquitin, the ubiquitin-activating enzyme E1, and the ubiquitin-conjugating enzyme E2; this indicated that LeATL6 represents ubiquitin ligase E3. LeATL6 expression also was induced by elicitor treatment of jail-1 mutant tomato cells in which the jasmonic acid (JA)-mediated signaling pathway was impaired; however, JA-dependent expression of the basic PR-6 and TPI-1 genes that encode proteinase inhibitor II and I, respectively, was not induced in elicitor-treated jail-1 mutants. Furthermore, transient overexpression of LeATL6 under the control of the Cauliflower mosaic virus 35S promoter induced the basic PR6 and TPI-1 expression in wild tomato but not in the jail-1 mutant. In contrast, LeATL6 overexpression did not activate salicylic acid-responsive acidic PR-1 and PR-2 promoters in wild tomato. These results indicated that elicitor-responsive LeATL6 probably regulates JA-dependent basic PR6 and TPI-1 gene expression in tomato. The LeATL6-associated ubiquitin/proteasome system may contribute to elicitor-activated defense responses via a JA-dependent signaling pathway in plants.
Journal of Plant Physiology | 2010
Kazuhisa Kato; Koki Kanahama; Yoshinori Kanayama
Nitrogenase activity, as acetylene-reduction activity (ARA), in Lotus root nodules was clearly inhibited 27h after the addition of nitrate. Nitric oxide (NO) production was detected at that time in nitrate-supplied root nodules using the NO-reactive fluorescent probe diaminofluorescein-2 diacetate. The involvement of NO production in the inhibition of nitrogenase activity by nitrate was investigated using the NO donor sodium nitroprusside (SNP) and the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO). SNP inhibited ARA at 1mM, and c-PTIO suppressed the inhibition of ARA by nitrate. These results suggest that NO is involved in the inhibition of nitrogenase activity by nitrate in Lotus root nodules.
Plant Biology | 2008
Takeaki Ishihara; Ken-Taro Sekine; Shu Hase; Yoshinori Kanayama; S. Seo; Y. Ohashi; Tomonobu Kusano; Daisuke Shibata; Jyoti Shah; Hideki Takahashi
The Arabidopsis thaliana ENHANCED DISEASE SUSCEPTIBILITY 5 gene (EDS5) is required for salicylic acid (SA) synthesis in pathogen-challenged plants. SA and EDS5 have an important role in the Arabidopsis RCY1 gene-conferred resistance against the yellow strain of Cucumber mosaic virus [CMV(Y)], a Bromoviridae, and HRT-conferred resistance against the Tombusviridae, Turnip crinkle virus (TCV). EDS5 expression and SA accumulation are induced in response to CMV(Y) inoculation in the RCY1-bearing ecotype C24. To further discern the involvement of EDS5 in Arabidopsis defence against viruses, we overexpressed the EDS5 transcript from the constitutively expressed Cauliflower mosaic virus 35S gene promoter in ecotype C24. In comparison to the non-transgenic control, the basal level of salicylic acid (SA) was twofold higher in the 35S:EDS5 plant. Furthermore, viral spread and the size of the hypersensitive response associated necrotic local lesions (NLL) were more highly restricted in CMV(Y)-inoculated 35S:EDS5 than in the non-transgenic plant. The heightened restriction of CMV(Y) spread was paralleled by more rapid induction of the pathogenesis-related gene, PR-1, in the CMV(Y)-inoculated 35S:EDS5 plant. The 35S:EDS5 plant also had heightened resistance to the virulent CMV strain, CMV(B2), and TCV. These results suggest that, in addition to R gene-mediated gene-for-gene resistance, EDS5 is also important for basal resistance to viruses. However, while expression of the Pseudomonas putida nahG gene, which encodes the SA-degrading salicylate hydroxylase, completely suppressed 35S:EDS5-conferred resistance against CMV(Y) and TCV, it only partially compromised resistance against CMV(B2), indicating that SA-dependent and -independent mechanisms are associated with 35S:EDS5-conferred resistance against viruses.
Planta | 2006
Tsuyoshi Amemiya; Yoshinori Kanayama; Shohei Yamaki; Kunio Yamada; Katsuhiro Shiratake
The vacuole is a large, multifunctional organelle related to the processes of cell expansion, solute accumulation, regulation of cytoplasmic ion concentrations, pH homeostasis and osmoregulation, which are directly or indirectly achieved by vacuolar H+-pumps: vacuolar H+-ATPase (V-ATPase; EC 3.6.1.3) and vacuolar H+-pyrophosphatase (V-PPase; EC 3.6.1.1). In this study, we produced antisense-transgenic tomatoes (Lycopersicon esculentum L.) of the V-ATPase A subunit, which is under the control of the fruit-specific 2A11 promoter. One β-glucuronidase (GUS)-transgenic line (GUS control) and seven A subunit antisense-transgenic lines were obtained. The amount of V-ATPase A subunit mRNA in fruit decreased in all antisense-transgenic lines, but in leaves showed no difference compared with the GUS control line and the nontransformant, suggesting that suppression of the V-ATPase A subunit by a 2A11 promoter is limited to fruit. The antisense-transgenic plants had smaller fruits compared with the GUS control line and the nontransformant. Surprisingly, fruits from the antisense-transgenic plants, except the fruit that still had relatively high expression of A subunit mRNA, had few seeds. Sucrose concentration in fruits from the antisense-transgenic plants increased, but glucose and fructose concentrations did not change. These results show the importance of V-ATPase, not only in fruit growth, but also in seed formation and in sugar composition of tomato fruit.
Phytochemistry | 1996
Akira Tateishi; Yoshinori Kanayama; Shohei Yamaki
Abstract Cell wall-bound glycosidase activities were measured in pre-ripe and ripe fruits of Japanese pears (Pyrus serotina Rehd. var. culta. cv. Hosui). α- l -Arabinofuranosidase (EC. 3.2.1.55) activity increased dramatically with fruit ripening and its activity was assayed during fruit development and ripening. After the fruit enlargement stage, cell wall-bound α- l -arabinofuranosidase activity increased 15-fold with fruit ripening. The enzyme was solubilized from cell walls using the chelator trans-1,2-cyclohexanediamine-N,N,N′,N′-tetraacetic acid and the solubilized enzyme purified using DEAE-cellulose, hydroxyapatite, Mono Q and Sephadex G-100 chromatography. The purified enzyme was a Mr 42 000 monomer on SDS-PAGE. Optimum pH activity was 5.0 and the Km value was 34 mM for p- nitrophenyl-α- l -arabinofuranoside .
Plant and Cell Physiology | 2009
Yoko Kawamura; Shigehito Takenaka; Shu Hase; Mayumi Kubota; Yuki Ichinose; Yoshinori Kanayama; Kazuhiro Nakaho; Daniel F. Klessig; Hideki Takahashi
The cell wall protein fraction (CWP) is purified from the non-pathogenic biocontrol agent Pythium oligandrum and is composed of two glycoproteins (POD-1 and POD-2), which are structurally similar to class III elicitins. In tomato plants treated with CWP, jasmonic acid (JA)- and ethylene (ET)-dependent signaling pathways are activated, and resistance to Ralstonia solanaceraum is enhanced. To dissect CWP-induced defense mechanisms, we investigated defense gene expression and resistance to bacterial pathogens in Arabidopsis thaliana ecotype Col-0 treated with CWP. When the leaves of Col-0 were infiltrated with CWP, neither visible necrosis nor salicylic acid (SA)-responsive gene (PR-1 and PR-5) expression was induced. In contrast, JA-responsive gene (PDF1.2 and JR2) expression was up-regulated and the resistance to R. solanaceraum and Pseudomonas syringae pv. tomato DC3000 was enhanced in response to CWP. Such CWP-induced defense responses were completely compromised in CWP-treated coi1-1 and jar1-1 mutants with an impaired JA signaling pathway. The induction of defense-related gene expression after CWP treatment was partially compromised in ET-insensitive ein2-1 mutants, but not in SA signaling mutants or nahG transgenic plants. Global gene expression analysis using cDNA array also suggested that several other JA- and ET-responsive genes, but not SA-responsive genes, were up-regulated in response to CWP. Further analysis of CWP-induced defense responses using another eight mutants with impaired defense signaling pathways indicated that, interestingly, the induction of JA-responsive gene expression and enhanced resistance to two bacterial pathogens in response to CWP were completely compromised in rar1-1, rar1-21, sgt1a-1, sgt1b (edm1) and npr1-1 mutants. Thus, the CWP-induced defense system appears to be regulated by JA-mediated and SGT1-, RAR1- and NPR1-dependent signaling pathways.
Phytochemistry | 1994
Masaharu Hosaka; Yoshinori Kanayama; Katsuhiro Shiratake; Shohei Yamaki
Abstract Vacuolar type H + -ATPase (V-type ATPase) was isolated from a tonoplast preparation of mature pear Pyrus communis L. var. sativa DC, cv ‘La France’) fruit. This ATPase comprised 10 polypeptides of M r 68 000, 54 000, 44 000, 42 000, 35 000, 30 000, 27 000, 16 000, 13 000 and 12 000 as subunits by SDS-PAGE. This ATPase was similar to the general V-type ATPase.
Planta | 2011
Yoshimi Hori; Koji Nishidate; Manabu Nishiyama; Koki Kanahama; Yoshinori Kanayama
The effects of light quality on flowering time were investigated in Gypsophila paniculata, which is a long-day cut flower, and with Arabidopsis under long-day conditions with light-emitting diodes (LEDs). Gypsophila paniculata plants were grown under natural daylight and flowering was controlled by long-day treatment with a weak LED light of a single color in the night. Flowering was promoted not by blue light, but by far-red light in G. paniculata, while flowering was promoted by both light colors in Arabidopsis. FT homologs of G. paniculataGpFT1 and GpFT2 were differentially expressed under long-day conditions with white light, suggesting that they play roles in flowering at different stages of reproductive development. GpFTs and FT gene expression was not induced by far-red light in G. paniculata or Arabidopsis. Instead, the expression of the SOC1 homolog of G. paniculataGpSOC1 and SOC1 was induced by far-red light in G. paniculata and Arabidopsis. Flowering was promoted by induction of FT and SOC1 expression with blue light in Arabidopsis, whereas GpFTs and GpSOC1 expression was low with blue light induction in G. paniculata. The relationship between flowering and the expression of FT and SOC1 in Arabidopsis was confirmed with ft and soc1 mutants. These results suggest that long-day conditions with far-red light promote flowering through SOC1 and its homologs, while the conditions with blue light do not promote flowering in G. paniculata, because of low expression of GpFTs and GpSOC1 in contrast to that in Arabidopsis.