Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoshinori Sumita is active.

Publication


Featured researches published by Yoshinori Sumita.


The International Journal of Biochemistry & Cell Biology | 2011

Bone marrow-derived cells rescue salivary gland function in mice with head and neck irradiation

Yoshinori Sumita; Younan Liu; Saeed Khalili; Ola M. Maria; Dengsheng Xia; Sharon Key; Ana P. Cotrim; Eva Mezey; Simon D. Tran

Treatment for most patients with head and neck cancers includes ionizing radiation. A consequence of this treatment is irreversible damage to salivary glands (SGs), which is accompanied by a loss of fluid-secreting acinar-cells and a considerable decrease of saliva output. While there are currently no adequate conventional treatments for this condition, cell-based therapies are receiving increasing attention to regenerate SGs. In this study, we investigated whether bone marrow-derived cells (BMDCs) can differentiate into salivary epithelial cells and restore SG function in head and neck irradiated mice. BMDCs from male mice were transplanted into the tail-vein of 18Gy-irradiated female mice. Salivary output was increased in mice that received BMDCs transplantation at week 8 and 24 post-irradiation. At 24 weeks after irradiation (IR), harvested SGs (submandibular and parotid glands) of BMDC-treated mice had greater weights than those of non-treated mice. Histological analysis shows that SGs of treated mice demonstrated an increased level of tissue regenerative activity such as blood vessel formation and cell proliferation, while apoptotic activity was increased in non-transplanted mice. The expression of stem cell markers (Sca-1 or c-kit) was detected in BMDC-treated SGs. Finally, we detected an increased ratio of acinar-cell area and approximately 9% of Y-chromosome-positive (donor-derived) salivary epithelial cells in BMDC-treated mice. We propose here that cell therapy using BMDCs can rescue the functional damage of irradiated SGs by direct differentiation of donor BMDCs into salivary epithelial cells.


Journal of Periodontal Research | 2009

Characteristic changes of periodontal ligament-derived cells during passage.

T. Itaya; Hideaki Kagami; Kunihiko Okada; Aika Yamawaki; Yuji Narita; M. Inoue; Yoshinori Sumita; Minoru Ueda

BACKGROUND AND OBJECTIVE Although periodontal ligament-derived cells are expected to be a useful source of cells for periodontal tissue engineering, the characteristic changes of primary cultured cells have not been well studied. Therefore, the aim of this study was to investigate the characteristics of periodontal ligament-derived cells and their changes during passage. MATERIAL AND METHODS Human periodontal ligament tissue was obtained from extracted third molars. Cells were subcultured until passage 6 and the cell characteristics from early to late passages were evaluated using immunofluorescence microscopy, alkaline phosphatase activity analyses, reverse transcription-polymerase chain reaction and quantitative real-time polymerase chain reaction. To examine the function of periodontal ligament-derived cells further, cells were transplanted into the renal subcapsule of an immunocompromised rat. RESULTS Immunofluorescence results showed relatively uniform expression of MSX-2 and osteonectin from passage 1 until passage 6. The STRO-1-positive fraction was 33.5% at passage 0, which was reduced to 14.7% at passage 3. Cultured cells at passage 1 expressed mRNA for collagen type I, collagen type XII, Runx2, alkaline phosphatase, osteonectin, osteopontin, scleraxis, tenomodulin, Msx2, GDF5 and GDF7 genes, but not for bone sialoprotein. The level of mRNA expression from tenomodulin and collagen type XII genes decreased after passage 3. Alkaline phosphatase activity decreased in cells at later passages. Osteogenic induction of periodontal ligament-derived cells resulted in a down-regulation of the tenomodulin gene. Transplanted cells from both early and late passages produced dense collagen fiber bundles without calcified tissue. CONCLUSION Cultured periodontal ligament-derived cells were a morphologically homogeneous population, although expression of STRO-1 was limited in primary culture. Cultured cells showed de-differentiation during passage for both osteogenesis- and tendo/ligamentogenesis-related genes.


Medical Molecular Morphology | 2008

Tooth-forming potential in embryonic and postnatal tooth bud cells

Masaki J. Honda; Hanson Fong; Shinji Iwatsuki; Yoshinori Sumita; Mehmet Sarikaya

Humans are genetically programmed to replace their teeth once during childhood. Therefore, when adult teeth are lost or damaged, they cannot be regenerated or regrown. However, with the advancement of stem cell biology and tissue engineering, regenerating the whole tooth has become a realistic and attractive option to replace a lost or damaged tooth, and therefore has strongly attracted attention in the field of dental research. During the past several years, significant progress has been made in this research endeavor, providing greater understanding of the production of an entire biological tooth by tissue engineering using stem cells. There are several ways to reproduce an entire biological tooth. Approaches are categorized according to the cell sources that have the potential to produce teeth. One source is the embryonic tooth bud, and the other is the postnatal tooth bud. The results from embryonic and postnatal tooth buds differ considerably. In particular, the potential to regulate the shape of the tooth crown from embryonic tooth bud is higher than from postnatal tooth bud. This article describes the achievements to date in production of biological teeth, mostly from our laboratory. In particular, we describe the potential to produce teeth from embryonic and postnatal tooth buds.


PLOS ONE | 2012

In Vivo Comparison of the Bone Regeneration Capability of Human Bone Marrow Concentrates vs. Platelet-Rich Plasma

Weijian Zhong; Yoshinori Sumita; Seigo Ohba; Takako Kawasaki; Kazuhiro Nagai; Guowu Ma; Izumi Asahina

Background Bone marrow aspirate concentrate (BMAC) including high densities of stem cells and progenitor cells may possess a stronger bone regenerative capability compared with Platelet-rich plasma (PRP), which contains enriched growth factors. The objective of this study was to evaluate the effects of human BMAC and PRP in combination with β-tricalcium phosphate (β-TCP) on promoting initial bone augmentation in an immunodeficient mouse model. Methodology/Principal Findings BMAC and PRP were concentrated with an automated blood separator from the bone marrow and peripheral blood aspirates. β-TCP particles were employed as a scaffold to carry cells. After cell counting and FACS characterization, three groups of nude mice (BMAC+TCP, PRP+TCP, and a TCP control) were implanted with graft materials for onlay placement on the cranium. Samples were harvested after 4 weeks, and serial sections were prepared. We observed the new bone on light microscopy and performed histomorphometric analysis. After centrifugation, the concentrations of nucleated cells and platelets in BMAC were increased by factors of 2.8±0.8 and 5.3±2.4, respectively, whereas leucocytes and platelets in PRP were increased by factors of 4.1±1.8 and 4.4±1.9, respectively. The concentrations of CD34-, CD271-, CD90-, CD105-, and CD146-positive cells were markedly increased in both BMAC and PRP. The percentage of new bone in the BMAC group (7.6±3.9%) and the PRP group (7.2±3.8%) were significantly higher than that of TCP group (2.7±1.4%). Significantly more bone cells in the new bone occurred in sites transplanted with BMAC (552±257) and PRP (491±211) compared to TCP alone (187±94). But the difference between the treatment groups was not significant. Conclusions/Significance Both human BMACs and PRP may provide therapeutic benefits in bone tissue engineering applications. These fractions possess a similar ability to enhance early-phase bone regeneration.


The International Journal of Biochemistry & Cell Biology | 2011

Bone marrow-derived cells: A potential approach for the treatment of xerostomia.

Simon D. Tran; Yoshinori Sumita; Saeed Khalili

Transplantations of bone marrow-derived cells (BMDCs) are traditionally used for hematologic diseases, but there are increasing numbers of clinical trials using BMDC treatments for non-hematologic disorders, including autoimmune diseases. BMDCs are recently reported to improve organ functions. This paper will review available reports supporting the role of BMDCs in reducing xerostomia (i.e. re-establishing salivary gland functions) due to head and neck irradiation for cancer therapies and in Sjögrens syndrome. There are reports that BMDCs provide a beneficial effect on the saliva production. BMDCs positively affect blood vessels stability and regeneration in irradiated salivary glands. Also, BMDCs provide an immunomodulatory activity in mice with Sjögrens-like disease. While the exact mechanisms by which BMDCs improve organ functions remain controversial, there is preliminary evidence that a combination of them (such as cell transdifferentiation, vasculogenesis, and paracrine effect) occur in salivary glands.


Connective Tissue Research | 2007

Differential Inducibility of Human and Porcine Dental Pulp-Derived Cells into Odontoblasts

Akiko Tonomura; Yoshinori Sumita; Yusuke Ando; Daisuke Iejima; Hideaki Kagami; Masaki J. Honda; Minoru Ueda

A robust method for generating odontoblasts from cultured dental pulp cells has not been established. In this study, efficient methods for deriving odontoblasts from cultured human and porcine dental pulp-derived cells were investigated with special attention to species differences. Cultured human cells showed relatively low alkaline phosphatase (ALP) activity in the presence of dexamethasone (Dex) and β-glycerophosphate (β-Gly). In contrast, the addition of 1,25-dihydroxyvitaminD3 (VitD3) significantly increased the ALP activity. In porcine cells, β-Gly alone or a combination of Dex and β-Gly significantly increased ALP activity; however, addition of VitD3 reduced this activity. RT-PCR and Western blotting analysis revealed that the combination of three induction reagents on human cells significantly upregulates the expression of osteocalcin mRNA, and dentin sialoprotein. We propose that the combination of Dex, β-Gly, and VitD3 is critical for differentiation of human dental pulp-derived cells into odontoblasts. In addition, the inducibility of dental pulp-derived cells presented remarkable species differences.


Annals of Biomedical Engineering | 2011

Engineering Bone Formation from Human Dental Pulp- and Periodontal Ligament-Derived Cells

Hideyoshi Ikeda; Yoshinori Sumita; Mihoko Ikeda; Hisazumi Ikeda; Teruhito Okumura; Eiko Sakai; Masahiro Nishimura; Izumi Asahina

A robust method for inducing bone formation from cultured dental mesenchymal cells has not been established. In this study, a method for generating bone tissue in vivo from cultured human dental pulp- and periodontal ligament-derived cells (DPCs and PDLCs, respectively) was designed using exogenous bone morphogenetic protein 2 (BMP2). DPCs and PDLCs showed enhanced alkaline phosphatase (ALP) activity and calcified nodule formation in medium containing dexamethasone, β-glycerophosphate, and ascorbic acid (osteogenic medium). However, the addition of recombinant human bone morphogenetic protein 2 (rhBMP2) to osteogenic medium remarkably increased ALP activity and in vitro calcification above the increases observed with osteogenic medium alone. rhBMP2 also significantly upregulated the expression of osteocalcin, osteopontin, and dentin matrix protein 1 mRNA in both cell types cultured in osteogenic medium. Finally, we detected prominent bone-like tissue formation in vivo when cells had been exposed to rhBMP2 in osteogenic medium. In contrast, treatments with osteogenic medium or rhBMP2 alone could not induce abundant mineralized tissue formation. We propose here that treatment with rhBMP2 in osteogenic medium can make dental mesenchymal tissues a highly useful source of cells for bone tissue engineering. In addition, both DPCs and PDLCs showed similar and remarkable osteo-inducibility.


Biology of Blood and Marrow Transplantation | 2011

Microchimerism in Salivary Glands after Blood- and Marrow-Derived Stem Cell Transplantation

Simon D. Tran; Robert S. Redman; A. John Barrett; Steven Z. Pavletic; Sharon Key; Younan Liu; Ashley Carpenter; Hieu M. Nguyen; Yoshinori Sumita; Bruce J. Baum; Stanley R. Pillemer; Eva Mezey

Blood- and marrow-derived stem cells (BMDSCs) provide disease-ameliorating effects for cardiovascular and autoimmune diseases. Microchimerism from donor BMDSCs has been reported in several recipient tissues. We hypothesized that this finding suggests a potential use of BMDSCs in the treatment of salivary dysfunctions. We investigated the presence of Y chromosome-positive cells in salivary gland biopsies of 5 females who had received a marrow or blood stem cell transplant from male donors. One to 16 years after transplantation, all recipients exhibited scattered Y chromosome-positive cells in the acini, ducts, and stroma of their salivary glands (mean of 1.01%). Potentially, these cells can be markers of transplantation tolerance, contribute to neoplastic epithelial tissues, or engraft at sites of injury. In addition, transplantation of BMDSCs could be used for treatment of Sjögrens syndrome and salivary glands damaged by therapeutic irradiation for cancers of the head and neck.


Journal of Dental Research | 2012

Formation of Engineered Bone with Adipose Stromal Cells from Buccal Fat Pad

Takeshi Shiraishi; Yoshinori Sumita; Y. Wakamastu; Kazuhiro Nagai; Izumi Asahina

A robust method for inducing bone formation from adipose-derived stromal cells (ADSCs) has not been established. Moreover, the efficacy of strong osteogenic inducers including BMP-2 for ADSC-mediated bone engineering remains controversial. Meanwhile, the buccal fat pad (BFP), which is found in the oral cavity as an adipose-encapsulated mass, has been shown to have potential as a new accessible source of ADSCs for oral surgeons. However, to date, there have been no reports that define the practical usefulness of ADSCs from BFP (B-ADSCs) for bone engineering. Here, we report an efficient method of generating bone from B-ADSCs using rhBMP-2. The analyses show that B-ADSCs can differentiate in vitro toward the osteoblastic lineage by the addition of rhBMP-2 to culture medium, regardless of the presence of osteoinductive reagents (OSR), as demonstrated by measurements of ALP activity, in vitro calcification, and osteogenic gene expression. Interestingly, adipogenic genes were clearly detectable only in cultures with rhBMP-2 and OSR. However, in vivo bone formation was most substantial when B-ADSCs cultured in this condition were transplanted. Thus, B-ADSCs reliably formed engineered bone when pre-treated with rhBMP-2 for inducing mature osteoblastic differentiation. This study supports the potential translation for B-ADSC use in the clinical treatment of bone defects.


European Journal of Oral Sciences | 2009

The location and characteristics of two populations of dental pulp cells affect tooth development.

Yoshinori Sumita; Shuhei Tsuchiya; Izumi Asahina; Hideaki Kagami; Masaki J. Honda

This study investigated the characteristics of two dental pulp cell populations during the early stages of crown formation in porcine teeth. A transplantation method was developed to reproduce epithelial cell-mesenchymal cell interactions during odontogenesis (tooth development). The technique allowed two types of cells/tissue to be combined in vivo. Populations of cells localized in the cervical loop epithelium region, dental pulp horn, and dental pulp core chambers were isolated and dissociated into single cells. Each population was examined for its gene-expression pattern using both semiquantitative and quantitative reverse transcription-polymerase chain reaction (RT-PCR) analyses, and for its tissue-formation capability by combining the cervical loop epithelial cells with either pulp horn cells or pulp core cells on biodegradable collagen scaffolds that were subsequently examined using histology and immunohistology. Gene-expression patterns showed that pulp horn cells were more mature than pulp core cells. Cervical loop epithelial cells combined with pulp horn cells mainly reconstituted dentin-cementum structures. By contrast, cervical loop epithelial cells combined with pulp core cells reconstituted enamel-dentin structures. These results suggest that mesenchymal cells residing in a specific location of the pulp possess a specific tissue-formation potential when combined with epithelial cells.

Collaboration


Dive into the Yoshinori Sumita's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hideaki Kagami

Matsumoto Dental University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge