Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoshio Goshima is active.

Publication


Featured researches published by Yoshio Goshima.


Nature | 2003

Cyclic AMP/GMP-dependent modulation of Ca2+ channels sets the polarity of nerve growth-cone turning

Makoto Nishiyama; Akemi Hoshino; Lily Tsai; John R. Henley; Yoshio Goshima; Marc Tessier-Lavigne; Mu-ming Poo; Kyonsoo Hong

Signalling by intracellular second messengers such as cyclic nucleotides and Ca2+ is known to regulate attractive and repulsive guidance of axons by extracellular factors. However, the mechanism of interaction among these second messengers in determining the polarity of the guidance response is largely unknown. Here, we report that the ratio of cyclic AMP to cyclic GMP activities sets the polarity of netrin-1-induced axon guidance: high ratios favour attraction, whereas low ratios favour repulsion. Whole-cell recordings of Ca2+ currents at Xenopus spinal neuron growth cones indicate that cyclic nucleotide signalling directly modulates the activity of L-type Ca2+ channels (LCCs) in axonal growth cones. Furthermore, cGMP signalling activated by an arachidonate 12-lipoxygenase metabolite suppresses LCC activity triggered by netrin-1, and is required for growth-cone repulsion mediated by the DCC–UNC5 receptor complex. By linking cAMP and cGMP signalling and modulation of Ca2+ channel activity in growth cones, these findings delineate an early membrane-associated event responsible for signal transduction during bi-directional axon guidance.


Nature Neuroscience | 2001

Phosphorylation of cofilin by LIM-kinase is necessary for semaphorin 3A-induced growth cone collapse

Hiroyuki Aizawa; Shuji Wakatsuki; Ai Ishii; Kenji Moriyama; Yukio Sasaki; Kazumasa Ohashi; Yoko Sekine-Aizawa; Atsuko Sehara-Fujisawa; Kensaku Mizuno; Yoshio Goshima; Ichiro Yahara

Semaphorin 3A is a chemorepulsive axonal guidance molecule that depolymerizes the actin cytoskeleton and collapses growth cones of dorsal root ganglia neurons. Here we investigate the role of LIM-kinase 1, which phosphorylates an actin-depolymerizing protein, cofilin, in semaphorin 3A-induced growth cone collapse. Semaphorin 3A induced phosphorylation and dephosphorylation of cofilin at growth cones sequentially. A synthetic cell-permeable peptide containing a cofilin phosphorylation site inhibited LIM-kinase in vitro and in vivo, and essentially suppressed semaphorin 3A-induced growth cone collapse. A dominant-negative LIM kinase, which could not be activated by PAK or ROCK, suppressed the collapsing activity of semaphorin 3A. Phosphorylation of cofilin by LIM-kinase may be a critical signaling event in growth cone collapse by semaphorin 3A.


Genes to Cells | 2005

Semaphorin3A signalling is mediated via sequential Cdk5 and GSK3β phosphorylation of CRMP2: implication of common phosphorylating mechanism underlying axon guidance and Alzheimer's disease

Yutaka Uchida; Toshio Ohshima; Yukio Sasaki; Hiromi Suzuki; Shigeki Yanai; Naoya Yamashita; Fumio Nakamura; Kohtaro Takei; Yasuo Ihara; Katsuhiko Mikoshiba; Papachan Kolattukudy; Jérôme Honnorat; Yoshio Goshima

Collapsin response mediating protein‐2 (CRMP2) has been identified as an intracellular protein mediating Semaphorin3A (Sema3A), a repulsive guidance molecule. In this study, we demonstrate that cyclin‐dependent kinase 5 (Cdk5) and glycogen synthase kinase 3β (GSK3β) plays a critical role in Sema3A signalling. In In vitro kinase assay, Cdk5 phosphorylated CRMP2 at Ser522, while GSK3β did not induce any phosphorylation of CRMP2. Phosphorylation by GSK3β was exclusively observed in Cdk5‐phosphorylated CRMP2, but barely in CRMP2T509A. These results indicate that Cdk5 primarily phosphorylates CRMP2 at Ser522 and GSK3β secondarily phosphorylates at Thr509. The dual‐phosphorylated CRMP2, but not non‐phosphorylated or single‐phosphorylated CRMP2, is recognized with the antibody 3F4, which is highly reactive with the neurofibrillary tangles of Alzheimers disease. 3F4 recognized the CRMP2 in the wild‐type but not cdk5−/− mouse embryonic brain lysates. The phosphorylation of CRMP2 at Ser522 caused reduction of its affinity to tubulin. In dorsal root ganglion neurones, Sema3A stimulation enhanced the levels of the phosphorylated form of CRMP2 detected by 3F4. Over‐expression of CRMP2 mutant substituting either Ser522 or Thr509 to Ala attenuates Sema3A‐induced growth cone collapse response. These results suggest that the sequential phosphorylation of CRMP is an important process of Sema3A signalling and the same mechanism may have some relevance to the pathological aggregation of the microtubule‐associated proteins.


Neuron | 2002

Fyn and Cdk5 Mediate Semaphorin-3A Signaling, Which Is Involved in Regulation of Dendrite Orientation in Cerebral Cortex

Yukio Sasaki; Chi Cheng; Yutaka Uchida; Oumi Nakajima; Toshio Ohshima; Takeshi Yagi; Masahiko Taniguchi; Takashi Nakayama; Reiji Kishida; Yoshihisa Kudo; Shigeaki Ohno; Fumio Nakamura; Yoshio Goshima

Semaphorin-3A (Sema3A), a member of class 3 semaphorins, regulates axon and dendrite guidance in the nervous system. How Sema3A and its receptors plexin-As and neuropilins regulate neuronal guidance is unknown. We observed that in fyn- and cdk5-deficient mice, Sema3A-induced growth cone collapse responses were attenuated compared to their heterologous controls. Cdk5 is associated with plexin-A2 through the active state of Fyn. Sema3A promotes Cdk5 activity through phosphorylation of Tyr15, a phosphorylation site with Fyn. A Cdk5 mutant (Tyr15 to Ala) shows a dominant-negative effect on the Sema3A-induced collapse response. The sema3A gene shows strong interaction with fyn for apical dendrite guidance in the cerebral cortex. We propose a signal transduction pathway in which Fyn and Cdk5 mediate neuronal guidance regulated by Sema3A.


Nature Medicine | 2006

A selective Sema3A inhibitor enhances regenerative responses and functional recovery of the injured spinal cord

Shinjiro Kaneko; Akio Iwanami; Masaya Nakamura; Akiyoshi Kishino; Kaoru Kikuchi; Shinsuke Shibata; Hirotaka James Okano; Takeshi Ikegami; Ayako Moriya; Osamu Konishi; Chikao Nakayama; Kazuo Kumagai; Toru Kimura; Yasufumi Sato; Yoshio Goshima; Masahiko Taniguchi; Mamoru Ito; Zhigang He; Yoshiaki Toyama; Hideyuki Okano

Axons in the adult mammalian central nervous system (CNS) exhibit little regeneration after injury. It has been suggested that several axonal growth inhibitors prevent CNS axonal regeneration. Recent research has demonstrated that semaphorin3A (Sema3A) is one of the major inhibitors of axonal regeneration. We identified a strong and selective inhibitor of Sema3A, SM-216289, from the fermentation broth of a fungal strain. To examine the effect of SM-216289 in vivo, we transected the spinal cord of adult rats and administered SM-216289 into the lesion site for 4 weeks. Rats treated with SM-216289 showed substantially enhanced regeneration and/or preservation of injured axons, robust Schwann cell–mediated myelination and axonal regeneration in the lesion site, appreciable decreases in apoptotic cell number and marked enhancement of angiogenesis, resulting in considerably better functional recovery. Thus, Sema3A is essential for the inhibition of axonal regeneration and other regenerative responses after spinal cord injury (SCI). These results support the possibility of using Sema3A inhibitors in the treatment of human SCI.


Journal of Biological Chemistry | 2000

Phosphorylation of collapsin response mediator protein-2 by Rho-kinase. Evidence for two separate signaling pathways for growth cone collapse.

Nariko Arimura; Naoyuki Inagaki; Kazuyasu Chihara; Céline Ménager; Nao Nakamura; Mutsuki Amano; Akihiro Iwamatsu; Yoshio Goshima; Kozo Kaibuchi

We previously identified Rho-associated protein kinase (Rho-kinase) as a specific effector of Rho. In this study, we identified collapsin response mediator protein-2 (CRMP-2), as a novel Rho-kinase substrate in the brain. CRMP-2 is a neuronal protein whose expression is up-regulated during development. Rho-kinase phosphorylated CRMP-2 at Thr-555 in vitro. We produced an antibody that specifically recognizes CRMP-2 phosphorylated at Thr-555. Using this antibody, we found that Rho-kinase phosphorylated CRMP-2 downstream of Rho in COS7 cells. Phosphorylation of CRMP-2 was observed in chick dorsal root ganglion neurons during lysophosphatidic acid (LPA)-induced growth cone collapse, whereas the phosphorylation was not detected during semaphorin-3A-induced growth cone collapse. Both LPA-induced CRMP-2 phosphorylation and LPA-induced growth cone collapse were inhibited by Rho-kinase inhibitor HA1077 or Y-32885. LPA-induced growth cone collapse was also blocked by a dominant negative form of Rho-kinase. On the other hand, semaphorin-3A-induced growth cone collapse was not inhibited by a dominant negative form of Rho-kinase. Furthermore, overexpression of a mutant CRMP-2 in which Thr-555 was replaced by Ala significantly inhibited LPA-induced growth cone collapse. These results demonstrate the existence of Rho-kinase-dependent and -independent pathways for growth cone collapse and suggest that CRMP-2 phosphorylation by Rho-kinase is involved in the former pathway.


Molecular and Cellular Biology | 2005

Phosphorylation by Rho Kinase Regulates CRMP-2 Activity in Growth Cones

Nariko Arimura; Céline Ménager; Yoji Kawano; Takeshi Yoshimura; Saeko Kawabata; Atsushi Hattori; Yuko Fukata; Mutsuki Amano; Yoshio Goshima; Masaki Inagaki; Nobuhiro Morone; Jiro Usukura; Kozo Kaibuchi

ABSTRACT Collapsin response mediator protein 2 (CRMP-2) enhances the advance of growth cones by regulating microtubule assembly and Numb-mediated endocytosis. We previously showed that Rho kinase phosphorylates CRMP-2 during growth cone collapse; however, the roles of phosphorylated CRMP-2 in growth cone collapse remain to be clarified. Here, we report that CRMP-2 phosphorylation by Rho kinase cancels the binding activity to the tubulin dimer, microtubules, or Numb. CRMP-2 binds to actin, but its binding is not affected by phosphorylation. Electron microscopy revealed that CRMP-2 localizes on microtubules, clathrin-coated pits, and actin filaments in dorsal root ganglion neuron growth cones, while phosphorylated CRMP-2 localizes only on actin filaments. The phosphomimic mutant of CRMP-2 has a weakened ability to enhance neurite elongation. Furthermore, ephrin-A5 induces phosphorylation of CRMP-2 via Rho kinase during growth cone collapse. Taken together, these results suggest that Rho kinase phosphorylates CRMP-2, and inactivates the ability of CRMP-2 to promote microtubule assembly and Numb-mediated endocytosis, during growth cone collapse.


Brain Research | 1996

Differential neurotoxicity induced by l-DOPA and dopamine in cultured striatal neurons

Neng-neng Cheng; Takehiko Maeda; Toshiaki Kume; Satoshi Kaneko; Hanae Kochiyama; Akinori Akaike; Yoshio Goshima; Yoshimi Misu

The neurotoxicity of L-DOPA and dopamine (DA) on striatal neurons was examined by using primary cultures of rat striatum. Exposure to L-DOPA and DA at concentrations of 30-300 microM induced dose-dependent cell death in both younger cultures (3 days in culture, 3 DIC) and elder cultures (10 days in culture, 10 DIC). The cytotoxicity of L-DOPA and DA was also dependent on the exposure time (6-24 h). Ascorbic acid (200 microM) inhibited both L-DOPA- and DA-induced cytotoxicity in 3 DIC cultures, whereas it provided significant protection against DA- but not L-DOPA-induced cytotoxicity in 10 DIC cultures. The L-DOPA cytotoxicity in 10 DIC cultures was prevented by a non-NMDA receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), and by an NMDA receptor antagonist, MK-801. Neither antagonist prevented DA cytotoxicity. D-DOPA did not affect the viability of 10 DIC cultures, though it elicited marked toxicity in 3 DIC cultures. These results suggest that there are two components in the mechanisms that mediate the L-DOPA neurotoxicity on striatal neurons: one is autoxidation-relevant and the other is autoxidation-irrelevant. With respect to the latter, glutamate receptor stimulation may be involved. In contrast, autoxidation plays an important role in DA neurotoxicity.


The Journal of Neuroscience | 2006

Regulation of Dendritic Branching and Spine Maturation by Semaphorin3A-Fyn Signaling

Asa Morita; Naoya Yamashita; Yukio Sasaki; Yutaka Uchida; Oumi Nakajima; Fumio Nakamura; Takeshi Yagi; Masahiko Taniguchi; Hiroshi Usui; Ritsuko Katoh-Semba; Kohtaro Takei; Yoshio Goshima

A member of semaphorin family, semaphorin3A (Sema3A), acts as a chemorepellent or chemoattractant on a wide variety of axons and dendrites in the development of the nervous systems. We here show that Sema3A induces clustering of both postsynaptic density-95 (PSD-95) and presynaptic synapsin I in cultured cortical neurons without changing the density of spines or filopodia. Neuropilin-1 (NRP-1), a receptor for Sema3A, is present on both axons and dendrites. When the cultured neurons are exposed to Sema3A, the cluster size of PSD-95 is markedly enhanced, and an extensive colocalization of PSD-95 and NRP-1 or actin-rich protrusion is seen. The effects of Sema3A on spine morphology are blocked by PP2, an Src type tyrosine kinase inhibitor, but not by the PP3, the inactive-related compound. In the cultured cortical neurons from fyn−/− mice, dendrites bear few spines, and Sema3A does not induce PSD-95 cluster formation on the dendrites. Sema3A and its receptor genes are highly expressed during the synaptogenic period of postnatal days 10 and 15. The cortical neurons in layer V, but not layer III, show a lowered density of synaptic bouton-like structure on dendrites in sema3A- and fyn-deficient mice. The neurons of the double-heterozygous mice show the lowered spine density, whereas those of single heterozygous mice show similar levels of the spine density as the wild type. These findings suggest that the Sema3A signaling pathway plays an important role in the regulation of dendritic spine maturation in the cerebral cortex neurons.


The EMBO Journal | 2002

Involvement of Fes/Fps tyrosine kinase in semaphorin3A signaling

Norihiro Mitsui; Ryoko Inatome; Shusuke Takahashi; Yoshio Goshima; Hirohei Yamamura; Shigeru Yanagi

Collapsin response mediator proteins (CRMPs)/TOAD64/Ulips/DRPs and CRAM have emerged as strong candidates for a role in semaphorin signaling. In this study we identified Fes/Fps (Fes) tyrosine kinase in the CRMP–CRAM complex and investigated whether Fes was involved in semaphorin3A (Sema3A) signaling. In COS‐7 cells, the interaction between Fes and plexinA1 (PlexA1) and the tyrosine phosphorylation of PlexA1 by Fes were observed; however, these events were significantly attenuated by co‐expression of neuropilin‐1 (NP‐1). Even with NP‐1 co‐expression, Sema3A was able to enhance the association of Fes with PlexA1 and Fes‐mediated tyrosine phosphorylation of PlexA1, CRAM and CRMP2. Co‐expression of Fes with PlexA1 exhibited COS‐7 cell contraction activity, indicating that Fes can convert inactive PlexA1 to its active form, whereas combination of Fes/NP‐1/PlexA1 or Fes kinase‐negative mutants/PlexA1 did not alter cell morphology. Finally, Sema3A‐induced growth cone collapse of dorsal root ganglion neurons was suppressed by expression of Fes kinase‐negative mutants. Taken together, our findings suggest that Fes links Sema3A signals to CRMP–CRAM, and that NP‐1 negatively regulates PlexA1 activation by Fes in resting condition.

Collaboration


Dive into the Yoshio Goshima's collaboration.

Top Co-Authors

Avatar

Yoshimi Misu

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar

Fumio Nakamura

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kohtaro Takei

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar

Yukio Sasaki

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takao Kubo

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar

Masumi Iketani

Yokohama City University

View shared research outputs
Researchain Logo
Decentralizing Knowledge