Yoshiro Saimi
Laboratory of Molecular Biology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yoshiro Saimi.
Proceedings of the National Academy of Sciences of the United States of America | 2001
Chris P. Palmer; Xinliang Zhou; Junyu Lin; Stephen H. Loukin; Ching Kung; Yoshiro Saimi
The molecular identification of ion channels in internal membranes has made scant progress compared with the study of plasma membrane ion channels. We investigated a prominent voltage-dependent, cation-selective, and calcium-activated vacuolar ion conductance of 320 pS (yeast vacuolar conductance, YVC1) in Saccharomyces cerevisiae. Here we report on a gene, the deduced product of which possesses significant homology to the ion channel of the transient receptor potential (TRP) family. By using a combination of gene deletion and re-expression with direct patch clamping of the yeast vacuolar membrane, we show that this yeast TRP-like gene is necessary for the YVC1 conductance. In physiological conditions, tens of micromolar cytoplasmic Ca2+ activates the YVC1 current carried by cations including Ca2+ across the vacuolar membrane. Immunodetection of a tagged YVC1 gene product indicates that YVC1 is primarily localized in the vacuole and not other intracellular membranes. Thus we have identified the YVC1 vacuolar/lysosomal cation-channel gene. This report has implications for the function of TRP channels in other organisms and the possible molecular identification of vacuolar/lysosomal ion channels in other eukaryotes.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Xinliang Zhou; Ann Batiza; Stephen H. Loukin; Chris P. Palmer; Ching Kung; Yoshiro Saimi
Ca2+ is released from the vacuole into the yeast cytoplasm on an osmotic upshock, but how this upshock is perceived was unknown. We found the vacuolar channel, Yvc1p, to be mechanosensitive, showing that the Ca2+ conduit is also the sensing molecule. Although fragile, the yeast vacuole allows limited direct mechanical examination. Pressures at tens of millimeters of Hg (1 mmHg = 133 Pa) activate the 400-pS Yvc1p conductance in whole-vacuole recording mode as well as in the excised cytoplasmic-side-out mode. Raising the bath osmolarity activates this channel and causes vacuolar shrinkage and deformation. It appears that, on upshock, a transient osmotic force activates Yvc1p to release Ca2+ from the vacuole. Mechanical activation of Yvc1p occurs regardless of Ca2+ concentration and is apparently independent of its known Ca2+ activation, which we now propose to be an amplification mechanism (Ca2+-induced Ca2+ release). Yvc1p is a member of the transient receptor potential-family channels, several of which have been associated with mechanosensation in animals. The possible use of Yvc1p as a molecular model to study mechanosensation in general is discussed.
Cell | 1990
John A. Kink; Margot E. Maley; Robin R. Preston; Kit-Yin Ling; Margaret A. Wallen-Friedman; Yoshiro Saimi; Ching Kung
We examined calmodulin and its gene from the wild-type and viable mutants of P. tetraurelia. The mutants, selected for their behavioral aberrations, have little or no defects in growth rates, secretion, excretion, or motility. They can be grouped according to whether they underreact or overreact behaviorally to certain stimuli, reflecting their respective loss of either a Ca2(+)-dependent Na+ current or a Ca2(+)-dependent K+ current. Sequence analyses showed that all three underreactors have amino acid substitutions in the N-terminal lobe of the calmodulin dumbbell, whereas all three overreactors have substitutions in the C-terminal lobe. No mutations fell in the central helix connecting the two lobes. These results may indicate that the sites defined by these mutations are important in membrane excitation but not in other biological functions. They also suggest that the two lobes of calmodulin may be used differentially for the activation of different Ca2(+)-dependent channels.
Physiological Reviews | 2008
Boris Martinac; Yoshiro Saimi; Ching Kung
Studies of ion channels have for long been dominated by the animalcentric, if not anthropocentric, view of physiology. The structures and activities of ion channels had, however, evolved long before the appearance of complex multicellular organisms on earth. The diversity of ion channels existing in cellular membranes of prokaryotes is a good example. Although at first it may appear as a paradox that most of what we know about the structure of eukaryotic ion channels is based on the structure of bacterial channels, this should not be surprising given the evolutionary relatedness of all living organisms and suitability of microbial cells for structural studies of biological macromolecules in a laboratory environment. Genome sequences of the human as well as various microbial, plant, and animal organisms unambiguously established the evolutionary links, whereas crystallographic studies of the structures of major types of ion channels published over the last decade clearly demonstrated the advantage of using microbes as experimental organisms. The purpose of this review is not only to provide an account of acquired knowledge on microbial ion channels but also to show that the study of microbes and their ion channels may also hold a key to solving unresolved molecular mysteries in the future.
FEBS Letters | 1995
Xin Liang Zhou; Brian Vaillant; Stephen H. Loukin; Ching Kung; Yoshiro Saimi
Our previous patch‐clamp studies showed that depolarization activates a K+‐specific current in the plasma membrane of the binding yeast, Saccharomyces cerevisiae [Gustin et al. (1986) Science 233, 1195–1197]. The yeast Genome Sequencing Project has now uncovered on the left arm of chromosome X an open reading frame (ORF) that predicts a 77‐kDa protein reminiscent of a shaker‐like α subunit with 6 membrane spans followed by a subunit with 2 spans. We found that deleting this ORF removes the yeast K+ current. Furnishing the ORF from plasmids restores or even greatly amplifies this current. These manipulations have no effects on the 40‐pS mechanosensitive conductance also native to this membrane. Thus, this ORF, named YKC1 here, likely encodes a structure for the K+‐specific channel of the yeast plasma membrane. This and other K+ channel subunits are compared and the possible uses of this gene in research are discussed. YKC1 has recently been shown by others to induce in frog oocytes a K+ current. Its activation is coupled to E K+ and its outward rectification depends on external divalent cations. We found the YKC1 channel in its native membrane activates at low voltages largely independent of E K+ and it remains so despite removal of divalents by chelation.
Journal of Biological Chemistry | 2010
Stephen H. Loukin; Xinliang Zhou; Zhenwei Su; Yoshiro Saimi; Ching Kung
Whether animal ion channels functioning as mechanosensors are directly activated by stretch force or indirectly by ligands produced by the stretch is a crucial question. TRPV4, a key molecular model, can be activated by hypotonicity, but the mechanism of activation is unclear. One model has this channel being activated by a downstream product of phospholipase A2, relegating mechanosensitivity to the enzymes or their regulators. We expressed rat TRPV4 in Xenopus oocytes and repeatedly examined >200 excised patches bathed in a simple buffer. We found that TRPV4 can be activated by tens of mm Hg pipette suctions with open probability rising with suction even in the presence of relevant enzyme inhibitors. Mechanosensitivity of TRPV4 provides the simplest explanation of its various force-related physiological roles, one of which is in the sensing of weight load during bone development. Gain-of-function mutants cause heritable skeletal dysplasias in human. We therefore examined the brachyolmia-causing R616Q gain-of-function channel and found increased whole-cell current densities compared with wild-type channels. Single-channel analysis revealed that R616Q channels maintain mechanosensitivity but have greater constitutive activity and no change in unitary conductance or rectification.
FEBS Letters | 1994
Yoshiro Saimi; Ching Kung
While many ion channels are modulated by phosphorylation, there is growing evidence that they can also be regulated by Ca2+‐calmodulin, apparently through direct binding. In some cases, this binding activates channels; in others, it modulates channel activities. These phenomena have been documented in Paramecium, in Drosophila, in vertebrate photoreceptors and olfactory receptors, as well as in ryanodine receptor Ca2+‐release channels. Furthermore, studies on calmodulin mutants in Paramecium have shown a clear bipartite distribution of two groups of mutations in the calmodulin gene that lead to opposite behavioral and electrophysiological phenotypes. These results indicate that the N‐lobe of calmodulin specifically interacts with one class of ion‐channel proteins and the C‐lobe with another.
The EMBO Journal | 1997
Stephen H. Loukin; Brian Vaillant; Xin Liang Zhou; Edgar P. Spalding; Ching Kung; Yoshiro Saimi
YKC1 (TOK1, DUK1, YORK) encodes the outwardly rectifying K+ channel of the yeast plasma membrane. Non‐targeted mutations of YKC1 were isolated by their ability to completely block proliferation when expressed in yeast. All such mutations examined occurred near the cytoplasmic ends of the transmembrane segments following either of the duplicated P loops, which we termed the ‘post‐P loop’ (PP) regions. These PP mutations specifically caused marked defects in the ‘C1’ states, a set of interrelated closed states that Ykc1 enters and exits at rates of tens to hundreds of milliseconds. These results indicate that the Ykc1 PP region plays a role in determining closed state conformations and that non‐targeted mutagenesis and microbial selection can be a valuable tool for probing structure–function relationships of ion channels.
The Journal of Membrane Biology | 1986
Yoshiro Saimi
SummaryThe membrane ofParamecium generates a Ca-dependent Na current upon depolarization. There is, however, also a Na current upon hyperpolarization in this membrane. The second Na current was analyzed under voltage clamp and found to have properties identical to those of the first. Both currents could be carried by Na and Li ions and not by K, Cs or choline ion. They were eliminated by either EGTA injection into the cell or Ca removal from the bath. Both currents were eliminated by a single-gene mutation,fast-2, that had no effect on Ca currents. These findings strongly suggest that these two currents are through the same Ca-dependent Na conductance. A hyperpolarization-induced Ca current was also identified, which served to activate the second Na current. These observations support a model that theParamecium membrane has two Ca channels with different voltage dependencies and only one Na channel, which is elicited by a rise of the itternal free Ca2+ concentration. The function of the Ca-dependent Na conductance is discussed.
Cell Calcium | 1992
Ching Kung; Robin R. Preston; Margot E. Maley; Kit-Yin Ling; Joseph A. Kanabrocki; Seavey Br; Yoshiro Saimi
Paramecium generates a Ca2+ action potential and can be considered a one-cell animal. Rises in internal [Ca2+] open membrane channels that specifically pass K+, or Na+. Mutational and patch-clamp studies showed that these channels, like enzymes, are activated by Ca(2+)-calmodulin. Viable CaM mutants of Paramecium have altered transmembrane currents and easily recognizable eccentricities in their swimming behavior, i.e. in their responses to ionic, chemical, heat, or touch stimuli. Their CaMs have amino-acid substitutions in either C- or N-terminal lobes but not the central helix. Surprisingly, these mutations naturally fall into two classes: C-lobe mutants (S101F, I136T, M145V) have little or no Ca(2+)-dependent K+ currents and thus over-react to stimuli. N-lobe mutants (E54K, G40E+D50N, V35I+D50N) have little or no Ca(2+)-dependent Na+ current and thus under-react to certain stimuli. Each mutation also has pleiotropic effects on other ion currents. These results suggest a bipartite separation of CaM functions, a separation consistent with the recent studies of Ca(2+)-ATPase by Kosk-Kosicka et al. [41, 55]. It appears that a major function of Ca(2+)-calmodulin in vivo is to orchestrate enzymes and channels, at or near the plasma membrane. The orchestrated actions of these effectors are not for vegetative growth at steady state but for transient responses to stimuli epitomized by those of electrically excitable cells.