Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoshitaka Iwanaga is active.

Publication


Featured researches published by Yoshitaka Iwanaga.


Nature | 2002

Fibulin-5/DANCE is essential for elastogenesis in vivo.

Tomoyuki Nakamura; Pilar Ruiz Lozano; Yasuhiro Ikeda; Yoshitaka Iwanaga; Aleksander Hinek; Susumu Minamisawa; Ching-Feng Cheng; Kazuhiro Kobuke; Nancy D. Dalton; Yoshikazu Takada; Kei Tashiro; John Ross; Tasuku Honjo; Kenneth R. Chien

The elastic fibre system has a principal role in the structure and function of various types of organs that require elasticity, such as large arteries, lung and skin. Although elastic fibres are known to be composed of microfibril proteins (for example, fibrillins and latent transforming growth factor (TGF)-β-binding proteins) and polymerized elastin, the mechanism of their assembly and development is not well understood. Here we report that fibulin-5 (also known as DANCE), a recently discovered integrin ligand, is an essential determinant of elastic fibre organization. fibulin-5-/- mice generated by gene targeting exhibit a severely disorganized elastic fibre system throughout the body. fibulin-5-/- mice survive to adulthood, but have a tortuous aorta with loss of compliance, severe emphysema, and loose skin (cutis laxa). These tissues contain fragmented elastin without an increase of elastase activity, indicating defective development of elastic fibres. Fibulin-5 interacts directly with elastic fibres in vitro, and serves as a ligand for cell surface integrins αvβ3, αvβ5 and α9β1 through its amino-terminal domain. Thus, fibulin-5 may provide anchorage of elastic fibres to cells, thereby acting to stabilize and organize elastic fibres in the skin, lung and vasculature.


Nature Medicine | 2002

Chronic suppression of heart-failure progression by a pseudophosphorylated mutant of phospholamban via in vivo cardiac rAAV gene delivery

Masahiko Hoshijima; Yasuhiro Ikeda; Yoshitaka Iwanaga; Susumu Minamisawa; Moto-o Date; Yusu Gu; Mitsuo Iwatate; Manxiang Li; Lili Wang; James M. Wilson; Yibin Wang; John Ross; Kenneth R. Chien

The feasibility of gene therapy for cardiomyopathy, heart failure and other chronic cardiac muscle diseases is so far unproven. Here, we developed an in vivo recombinant adeno-associated virus (rAAV) transcoronary delivery system that allows stable, high efficiency and relatively cardiac-selective gene expression. We used rAAV to express a pseudophosphorylated mutant of human phospholamban (PLN), a key regulator of cardiac sarcoplasmic reticulum (SR) Ca2+ cycling in BIO14.6 cardiomyopathic hamsters. The rAAV/S16EPLN treatment enhanced myocardial SR Ca2+ uptake and suppressed progressive impairment of left ventricular (LV) systolic function and contractility for 28–30 weeks, thereby protecting cardiac myocytes from cytopathic plasma-membrane disruption. Low LV systolic pressure and deterioration in LV relaxation were also largely prevented by rAAV/S16EPLN treatment. Thus, transcoronary gene transfer of S16EPLN via rAAV vector is a potential therapy for progressive dilated cardiomyopathy and associated heart failure.


Proceedings of the National Academy of Sciences of the United States of America | 2010

MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo

Takahiro Horie; Koh Ono; Masahito Horiguchi; Hitoo Nishi; Tomoyuki Nakamura; Kazuya Nagao; Minako Kinoshita; Yasuhide Kuwabara; Hiroyuki Marusawa; Yoshitaka Iwanaga; Koji Hasegawa; Masayuki Yokode; Takeshi Kimura; Toru Kita

Sterol regulatory element-binding protein 2 (SREBP-2) transcription factor has been identified as a key protein in cholesterol metabolism through the transactivation of the LDL receptor and cholesterol biosynthesis genes. Here, we generated mice lacking microRNA (miR)-33, encoded by an intron of the Srebp2, and showed that miR-33 repressed the expression of ATP-binding cassette transporter A1 (ABCA1) protein, a key regulator of HDL synthesis by mediating cholesterol efflux from cells to apolipoprotein A (apoA)-I. In fact, peritoneal macrophages derived from miR-33–deficient mice showed a marked increase in ABCA1 levels and higher apoA-I–dependent cholesterol efflux than those from WT mice. ABCA1 protein levels in liver were also higher in miR-33–deficient mice than in WT mice. Moreover, miR-33–deficient mice had significantly higher serum HDL cholesterol levels than WT mice. These data establish a critical role for miR-33 in the regulation of ABCA1 expression and HDL biogenesis in vivo.


Circulation Research | 1997

Increased Expression of Interleukin-1β and Monocyte Chemotactic and Activating Factor/Monocyte Chemoattractant Protein-1 in the Hypertrophied and Failing Heart With Pressure Overload

Tetsuo Shioi; Akira Matsumori; Yasuki Kihara; Moriaki Inoko; Koh Ono; Yoshitaka Iwanaga; Takehiko Yamada; Atsushi Iwasaki; Kouji Matsushima; Shigetake Sasayama

Studies on the effects of proinflammatory cytokines on the heart suggest that they play some roles in the pathogenesis of congestive heart failure (CHF). To determine the involvement of proinflammatory cytokine in cardiac hypertrophy and CHF induced by mechanical overload, we investigated the expression of interleukin (IL)-1 beta and monocyte chemotactic and activating factor (MCAF)/monocyte chemoattractant protein-1 (MCP-1) in the left ventricle (LV) of Dahl salt-sensitive (DS) rats that showed hypertrophy of the LV induced by hypertension and subsequently developed CHF. The IL-1 beta mRNA content in the LV of DS rats increased 3.9-fold when LV hypertrophy developed, and the increase reached 6.2-fold at the CHF stage compared with that of age-matched Dahl salt-resistant (DR) rats. The amount of IL-1 beta in the LV was positively correlated with the LV weight/body weight ratio. Most of the IL-1 beta immunoreactivity was localized in the endothelial cells and interstitial macrophages. The mRNA levels of MCAF in the LV increased 3.6-fold at 11 weeks and reached 4.8-fold at the CHF stage relative to the age-matched DR rats. MCAF protein was localized to the endothelial cells and interstitial macrophages. In DS rats, the number of interstitial macrophages increased diffusely throughout the LV. We suggest that increased chemokine expression, macrophage infiltration, and proinflammatory cytokine expression play some role in the pathogenesis of cardiac hypertrophy and failure induced by chronic mechanical overload.


Journal of Clinical Investigation | 2004

Chronic phospholamban inhibition prevents progressive cardiac dysfunction and pathological remodeling after infarction in rats

Yoshitaka Iwanaga; Masahiko Hoshijima; Yusu Gu; Mitsuo Iwatate; Thomas Dieterle; Yasuhiro Ikeda; Moto-o Date; Jacqueline Chrast; Masunori Matsuzaki; Kirk L. Peterson; Kenneth R. Chien; John Ross

Ablation or inhibition of phospholamban (PLN) has favorable effects in several genetic murine dilated cardiomyopathies, and we showed previously that a pseudophosphorylated form of PLN mutant (S16EPLN) successfully prevented progressive heart failure in cardiomyopathic hamsters. In this study, the effects of PLN inhibition were examined in rats with heart failure after myocardial infarction (MI), a model of acquired disease. S16EPLN was delivered into failing hearts 5 weeks after MI by transcoronary gene transfer using a recombinant adeno-associated virus (rAAV) vector. In treated (MI-S16EPLN, n = 16) and control (MI-saline, n = 18) groups, infarct sizes were closely matched and the left ventricle was similarly depressed and dilated before gene transfer. At 2 and 6 months after gene transfer, MI-S16EPLN rats showed an increase in left ventricular (LV) ejection fraction and a much smaller rise in LV end-diastolic volume, compared with progressive deterioration of LV size and function in MI-saline rats. Hemodynamic measurements at 6 months showed lower LV end-diastolic pressures, with enhanced LV function (contractility and relaxation), lowered LV mass and myocyte size, and less fibrosis in MI-S16EPLN rats. Thus, PLN inhibition by in vivo rAAV gene transfer is an effective strategy for the chronic treatment of an acquired form of established heart failure.


Circulation | 1998

Cardiac Endothelin-1 Plays a Critical Role in the Functional Deterioration of Left Ventricles During the Transition From Compensatory Hypertrophy to Congestive Heart Failure in Salt-Sensitive Hypertensive Rats

Yoshitaka Iwanaga; Yasuki Kihara; Koji Hasegawa; Koichi Inagaki; Takeshi Yoneda; Satoshi Kaburagi; Makoto Araki; Shigetake Sasayama

BACKGROUND To investigate whether endogenous ET-1 participates in an adaptive process of left ventricular hypertrophy (LVH) or a maladaptive process from LVH to congestive heart failure (CHF), we used a Dahl salt-sensitive (DS) rat model, in which systemic hypertension caused compensated concentric LVH at the age of 11 weeks followed by marked LV dilatation and global hypokinesis at the age of 17 weeks. METHODS AND RESULTS By specific sandwich enzyme immunoassay, serum and myocardial ET-1 levels at the LVH stage were not elevated compared with age-matched Dahl salt-resistant (DR) rats, despite the marked increase of LV/body weight ratio (LV/BW). However, at the CHF stage, serum and LV ET-1 levels increased by 3. 8-fold and 5.4-fold, respectively. LV ET-1 contents had close relationships with the fractional shortening (r=0.763) and the systolic wall stress (r=0.858) measured by in vivo transthoracic echocardiography. Immunohistochemistry demonstrated that the remarkably increased ET-1 in LV is located mainly in cardiomyocytes. By competitive reverse transcriptase-polymerase chain reaction, LV prepro-ET-1 mRNA levels increased by 4.1-fold in CHF rats. We randomized 11-week-old LVH rats to chronic treatment with the endothelin receptor antagonist bosentan (Bos, 100 mg. kg-1. d-1, n=14), the alpha1-receptor antagonist doxazosin (Dox, 1 mg. kg-1. d-1, n=12), or vehicle (Cont, n=14). Bos treatment did not alter the LV geometry and function at 15 weeks; however, it attenuated the decrease of LV fractional shortening by 51% (P<0.01) without reducing the LV/BW at 17 weeks. Conversely, Dox, which decreased the blood pressure to the same extent as Bos, did not affect the progression of LV dysfunction. Bos (93%; P<0.0001 versus Cont) but not Dox (42%; P=0.8465 versus Cont) ameliorated the survival rate at 17 weeks (Cont; 36%). CONCLUSIONS The accelerated myocardial synthesis of ET-1 contributes directly to LV contractile dysfunction during the transition from LVH to CHF. Unelevated levels of LV ET-1 at the established LVH stage and lack of effects on LV mass by chronic bosentan treatment suggest that myocardial growth is mediated through alternative pathways. These studies indicate that chronic ET antagonism may provide an additional strategy for heart failure therapy in humans.


Circulation-heart Failure | 2010

Analysis of Metabolic Remodeling in Compensated Left Ventricular Hypertrophy and Heart Failure

Takao Kato; Shinichiro Niizuma; Yasutaka Inuzuka; Tsuneaki Kawashima; Junji Okuda; Yodo Tamaki; Yoshitaka Iwanaga; Michiko Narazaki; Tetsuya Matsuda; Tomoyoshi Soga; Toru Kita; Takeshi Kimura; Tetsuo Shioi

Background—Congestive heart failure (CHF) is associated with a change in cardiac energy metabolism. However, the mechanism by which this change is induced and causes the progression of CHF is unclear. Methods and Results—We analyzed the cardiac energy metabolism of Dahl salt-sensitive rats fed a high-salt diet, which showed a distinct transition from compensated left ventricular hypertrophy to CHF. Glucose uptake increased at the left ventricular hypertrophy stage, and glucose uptake further increased and fatty acid uptake decreased at the CHF stage. The gene expression related to glycolysis, fatty acid oxidation, and mitochondrial function was preserved at the left ventricular hypertrophy stage but decreased at the CHF stage and was associated with decreases in levels of transcriptional regulators. In a comprehensive metabolome analysis, the pentose phosphate pathway that regulates the cellular redox state was found to be activated at the CHF stage. Dichloroacetate (DCA), a compound known to enhance glucose oxidation, increased energy reserves and glucose uptake. DCA improved cardiac function and the survival of the animals. DCA activated the pentose phosphate pathway in the rat heart. DCA activated the pentose phosphate pathway, decreased oxidative stress, and prevented cell death of cultured cardiomyocytes. Conclusions—Left ventricular hypertrophy or CHF is associated with a distinct change in the metabolic profile of the heart. DCA attenuated the transition associated with increased energy reserves, activation of the pentose phosphate pathway, and reduced oxidative stress.


Journal of the American College of Cardiology | 2002

Excessive activation of matrix metalloproteinases coincides with left ventricular remodeling during transition from hypertrophy to heart failure in hypertensive rats

Yoshitaka Iwanaga; Takeshi Aoyama; Yasuki Kihara; Yoko Onozawa; Takeshi Yoneda; Shigetake Sasayama

OBJECTIVES We sought to elucidate how the local activation of matrix metalloproteinases (MMPs) is balanced by that of the endogenous tissue inhibitors of MMP (TIMPs) during left ventricular (LV) remodeling. BACKGROUND Although it is known that the extracellular matrix (ECM) must be altered during LV remodeling, its local regulation has not been fully elucidated. METHODS In Dahl salt-sensitive rats with hypertension, in which a stage of concentric, compensated left ventricular hypertrophy (LVH) at 11 weeks is followed by a distinct stage of congestive heart failure (CHF) with LV enlargement and dysfunction at 17 weeks, we determined protein and messenger ribonucleic acid (mRNA) levels of LV myocardial TIMP-2 and -4 and MMP-2, as well as their concomitant activities. RESULTS No changes were found at the LVH stage. However, during the transition to CHF, TIMP-2 and -4 activities, protein and mRNA levels were all sharply increased. At the same time, the MMP-2 mRNA and protein levels and activities, as determined by gelatin zymography, as well as by an antibody capture assay, showed a substantial increase during the transition to CHF. The net MMP activities were closely related to increases in LV diameter (r = 0.763) and to systolic wall stress (r = 0.858) in vivo. CONCLUSIONS Both TIMPs and MMP-2 remained inactive during hypertrophy, per se; they were activated during the transition to CHF. At this time, the activation of MMP-2 surpassed that of TIMPs, possibly resulting in ECM breakdown and progression of LV enlargement.


Journal of Biological Chemistry | 2010

MicroRNA-15b Modulates Cellular ATP Levels and Degenerates Mitochondria via Arl2 in Neonatal Rat Cardiac Myocytes

Hitoo Nishi; Koh Ono; Yoshitaka Iwanaga; Takahiro Horie; Kazuya Nagao; Genzou Takemura; Minako Kinoshita; Yasuhide Kuwabara; Rieko Mori; Koji Hasegawa; Toru Kita; Takeshi Kimura

MicroRNAs (miRNAs or miRs) are small, non-coding RNAs that modulate mRNA stability and post-transcriptional translation. A growing body of evidence indicates that specific miRNAs can affect the cellular function of cardiomyocytes. In the present study, miRNAs that are highly expressed in the heart were overexpressed in neonatal rat ventricular myocytes, and cellular ATP levels were assessed. As a result, miR-15b, -16, -195, and -424, which have the same seed sequence, the most critical determinant of miRNA targeting, decreased cellular ATP levels. These results suggest that these miRNAs could specifically down-regulate the same target genes and consequently decrease cellular ATP levels. Through a bioinformatics approach, ADP-ribosylation factor-like 2 (Arl2) was identified as a potential target of miR-15b. It has already been shown that Arl2 localizes to adenine nucleotide transporter 1, the exchanger of ADP/ATP in mitochondria. Overexpression of miR-15b, -16, -195, and -424 suppressed the activity of a luciferase reporter construct fused with the 3′-untranslated region of Arl2. In addition, miR-15b overexpression decreased Arl2 mRNA and protein expression levels. The effects of Arl2 siRNA on cellular ATP levels were the same as those of miR-15b, and the expression of Arl2 could restore ATP levels reduced by miR-15b. A loss-of-function study of miR-15b resulted in increased Arl2 protein and cellular ATP levels. Electron microscopic analysis revealed that mitochondria became degenerated in cardiomyocytes that had been transduced with miR-15b and Arl2 siRNA. The present results suggest that miR-15b may decrease mitochondrial integrity by targeting Arl2 in the heart.


Circulation | 2000

Anti-Ischemic Effect of a Novel Cardioprotective Agent, JTV519, Is Mediated Through Specific Activation of δ-Isoform of Protein Kinase C in Rat Ventricular Myocardium

Koichi Inagaki; Yasuki Kihara; Wataru Hayashida; Toshiaki Izumi; Yoshitaka Iwanaga; Takeshi Yoneda; Yuzo Takeuchi; Katsuo Suyama; Eri Muso; Shigetake Sasayama

BACKGROUND A new 1,4-benzothiazepine derivative, JTV519, has a strong protective effect against Ca(2+) overload-induced myocardial injury. We investigated the effect of JTV519 on ischemia/reperfusion injury in isolated rat hearts. METHODS AND RESULTS At 30 minutes of reperfusion after 30-minute global ischemia, the percent recovery of left ventricular developed pressure was improved, and the creatine phosphokinase and lactate dehydrogenase leakage was reduced in a concentration-dependent manner when JTV519 was administered in the coronary perfusate both at 5 minutes before the induction of ischemia and at the time of reperfusion. The myocardial protective effect of JTV519 was completely blocked by pretreatment of the heart with GF109203X, a specific protein kinase C (PKC) inhibitor. In contrast, the effect of JTV519 was not affected by alpha(1)-, A(1)-, and B(2)-receptor blockers that couple with PKC in the cardiomyocyte. Both immunofluorescence images and immunoblots of JTV519-treated left ventricular myocardium and isolated ventricular myocytes demonstrated that this agent induced concentration-dependent translocation of the delta-isoform but not the other isoforms of PKC to the plasma membrane. CONCLUSIONS The mechanism of cardioprotection by JTV519 against ischemia/reperfusion injury involves isozyme-specific PKC activation through a receptor-independent mechanism. This agent may provide a novel pharmacological approach for the treatment of patients with acute coronary diseases via a subcellular mechanism mimicking ischemic preconditioning.

Collaboration


Dive into the Yoshitaka Iwanaga's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge