Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoshitake Hayashi is active.

Publication


Featured researches published by Yoshitake Hayashi.


Circulation | 1999

Expression of NADH/NADPH Oxidase p22phox in Human Coronary Arteries

Hiroshi Azumi; Nobutaka Inoue; Saori Takeshita; Yoshiyuki Rikitake; Seinosuke Kawashima; Yoshitake Hayashi; Hiroshi Itoh; Mitsuhiro Yokoyama

BACKGROUND NADH/NADPH oxidase is an important source of superoxide in the vasculature. Recently, we found that polymorphism of the gene p22phox, a critical component of this oxidase, is associated with a risk of coronary artery disease. The aim of this study was to investigate the localization of p22phox in human coronary arteries and to examine its difference in expression between nonatherosclerotic and atherosclerotic coronary arteries. METHODS AND RESULTS Using coronary artery sections from autopsied cases (n=11), the expression of p22phox was examined by immunohistochemistry and Western blotting. In nonatherosclerotic coronary arteries, p22phox was weakly expressed, mainly in the adventitia. In atherosclerotic coronary arteries, intensive immunoreactivity was detected in neointimal and medial smooth muscle cells and infiltrating macrophages in hypercellular regions and at the shoulder region. Semiquantitative analysis and Western blotting showed that the expression of p22phox in atherosclerotic coronary arteries was more pronounced than that in nonatherosclerotic arteries. Double staining revealed p22phox expression in adventitial fibroblasts, smooth muscle cells, macrophages in the neointima and media, and endothelial cells. CONCLUSIONS As atherosclerosis progressed, the expression of p22phox increased through the vessel wall. p22phox might participate in the pathogenesis and pathophysiology of atherosclerotic coronary disease.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2003

Interaction of Oxidative Stress and Inflammatory Response in Coronary Plaque Instability: Important Role of C-Reactive Protein

Seiichi Kobayashi; Nobutaka Inoue; Yoshitaka Ohashi; Mitsuyoshi Terashima; Kiyoko Matsui; Takao Mori; Hideki Fujita; Kojiro Awano; Katsuya Kobayashi; Hiroshi Azumi; Junya Ejiri; Ken-ichi Hirata; Seinosuke Kawashima; Yoshitake Hayashi; Hiroshi Yokozaki; Hiroshi Itoh; Mitsuhiro Yokoyama

Objective—C-reactive protein (CRP), a predictor of cardiovascular events, localizes in atherosclerotic arteries and exerts proinflammatory effects on vascular cells. Reactive oxygen species (ROS) have been implicated in atherogenesis and plaque instability. Methods and Results—Expressional pattern of CRP in directional coronary atherectomy specimens from 39 patients was examined. Characteristics of histological plaque instability and higher levels of serum CRP and fibrinogen were associated with the CRP immunoreactivity. In situ hybridization revealed the presence of CRP mRNA in coronary vasculature. Furthermore, the expression of CRP mRNA and protein was detected in cultured human coronary artery smooth muscle cells (CASMCs) by reverse transcriptase–polymerase chain reaction and Western blotting. In addition, CRP was frequently colocalized with p22phox, an essential component of NADH/NADPH oxidase, which is an important source of ROS in vasculature. Moreover, the incubation of cultured CASMCs with CRP resulted in the enhanced p22phox protein expression and in the generation of intracellular ROS. Conclusions—The expression of CRP in coronary arteries was associated with histological and clinical features of vulnerable plaque, and it had a prooxidative effect on cultured CASMCs, suggesting that it might play a crucial role in plaque instability and in the pathogenesis of acute coronary syndrome via its prooxidative effect.


Nature Medicine | 2005

Deletion of Cdkn1b ameliorates hyperglycemia by maintaining compensatory hyperinsulinemia in diabetic mice

Tohru Uchida; Takehiro Nakamura; Naoko Hashimoto; Tomokazu Matsuda; Ko Kotani; Hiroshi Sakaue; Yoshiaki Kido; Yoshitake Hayashi; Keiichi I. Nakayama; Morris F. White; Masato Kasuga

The protein p27Kip1 regulates cell cycle progression in mammals by inhibiting the activity of cyclin-dependent kinases (CDKs). Here we show that p27Kip1 progressively accumulates in the nucleus of pancreatic beta cells in mice that lack either insulin receptor substrate 2 (Irs2−/−) or the long form of the leptin receptor (Lepr−/− or db/db). Deletion of the gene encoding p27Kip1 (Cdkn1b) ameliorated hyperglycemia in these animal models of type 2 diabetes mellitus by increasing islet mass and maintaining compensatory hyperinsulinemia, effects that were attributable predominantly to stimulation of pancreatic beta-cell proliferation. Thus, p27Kip1 contributes to beta-cell failure during the development of type 2 diabetes in Irs2−/− and Lepr−/− mice and represents a potential new target for the treatment of this condition.


Journal of Clinical Investigation | 2003

PKCλ in liver mediates insulin-induced SREBP-1c expression and determines both hepatic lipid content and overall insulin sensitivity

Michihiro Matsumoto; Wataru Ogawa; Kazunori Akimoto; Hiroshi Inoue; Kazuaki Miyake; Kensuke Furukawa; Yoshitake Hayashi; Haruhisa Iguchi; Yasushi Matsuki; Ryuji Hiramatsu; Hitoshi Shimano; Nobuhiro Yamada; Shigeo Ohno; Masato Kasuga; Tetsuo Noda

PKClambda is implicated as a downstream effector of PI3K in insulin action. We show here that mice that lack PKClambda specifically in the liver (L-lambdaKO mice), produced with the use of the Cre-loxP system, exhibit increased insulin sensitivity as well as a decreased triglyceride content and reduced expression of the sterol regulatory element-binding protein-1c (SREBP-1c) gene in the liver. Induction of the hepatic expression of Srebp1c and of its target genes involved in fatty acid/triglyceride synthesis by fasting and refeeding or by hepatic expression of an active form of PI3K was inhibited in L-lambdaKO mice compared with that in control animals. Expression of Srebp1c induced by insulin or by active PI3K in primary cultured rat hepatocytes was inhibited by a dominant-negative form of PKClambda and was mimicked by overexpression of WT PKClambda. Restoration of PKClambda expression in the liver of L-lambdaKO mice with the use of adenovirus-mediated gene transfer corrected the metabolic abnormalities of these animals. Hepatic PKClambda is thus a determinant of hepatic lipid content and whole-body insulin sensitivity.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2002

Superoxide Generation in Directional Coronary Atherectomy Specimens of Patients With Angina Pectoris: Important Role of NAD(P)H Oxidase

Hiroshi Azumi; Nobutaka Inoue; Yoshitaka Ohashi; Mitsuyasu Terashima; Takao Mori; Hideki Fujita; Kojiro Awano; Katsuya Kobayashi; Kazumi Maeda; Katsuya Hata; Toshiro Shinke; Seiichi Kobayashi; Ken-ichi Hirata; Seinosuke Kawashima; Hiroyuki Itabe; Yoshitake Hayashi; Shinobu Imajoh-Ohmi; Hiroshi Itoh; Mitsuhiro Yokoyama

Objective—NADH/NADPH oxidase is an important source of reactive oxygen species (ROS) in the vasculature. Recently, we demonstrated that p22phox, an essential component of this oxidase, was expressed in human coronary arteries and that its expression was enhanced with the progression of atherosclerosis. The present study was undertaken to investigate its functional importance in the pathogenesis of coronary artery disease. For this aim, the expression of p22phox, the distribution of oxidized low density lipoprotein (LDL), and the generation of ROS in directional coronary atherectomy (DCA) specimens were examined. Methods and Results—DCA specimens were obtained from patients with stable or unstable angina pectoris. The distribution of p22phox and of oxidized LDL was examined by immunohistochemistry. The generation of superoxide in DCA specimens was assessed by the dihydroethidium method and lucigenin-enhanced chemiluminescence. ROS were closely associated with the distribution of p22phox and oxidized LDL. Not only inflammatory cells but also smooth muscle cells and fibroblasts generated ROS. There was a correlation between ROS and the expression of p22phox or oxidized LDL. The generation of ROS was significantly higher in unstable angina pectoris compared with stable angina pectoris. Conclusions—ROS generated by p22phox-based NADH/NADPH oxidase likely mediate the oxidative modification of LDL and might play a major role in pathogenesis of atherosclerotic coronary artery disease.


Diabetes | 2008

Forkhead Transcription Factor FoxO1 in Adipose Tissue Regulates Energy Storage and Expenditure

Jun Nakae; Yongheng Cao; Yasuko Orba; Hirofumi Sawa; Hiroshi Kiyonari; Kristy Iskandar; Koji Suga; Marc Lombès; Yoshitake Hayashi

OBJECTIVE—Adipose tissue serves as an integrator of various physiological pathways, energy balance, and glucose homeostasis. Forkhead box–containing protein O subfamily (FoxO) 1 mediates insulin action at the transcriptional level. However, physiological roles of FoxO1 in adipose tissue remain unclear. RESEARCH DESIGN AND METHODS—In the present study, we generated adipose tissue–specific FoxO1 transgenic mice (adipocyte protein 2 [aP2]-FLAG-Δ256) using an aP2 promoter/enhancer and a mutant FoxO1 (FLAGΔ256) in which the carboxyl terminal transactivation domain was deleted. Using these mice, we analyzed the effects of the overexpression of FLAGΔ256 on glucose metabolism and energy homeostasis. RESULTS—The aP2-FLAG-Δ256 mice showed improved glucose tolerance and insulin sensitivity accompanied with smaller-sized adipocytes and increased adiponectin (adipoq) and Glut 4 (Slc2a4) and decreased tumor necrosis factor α (Tnf) and chemokine (C-C motif) receptor 2 (Ccr2) gene expression levels in white adipose tissue (WAT) under a high-fat diet. Furthermore, the aP2-FLAG-Δ256 mice had increased oxygen consumption accompanied with increased expression of peroxisome proliferator–activated receptor γ coactivator (PGC)-1α protein and uncoupling protein (UCP)-1 (Ucp1), UCP-2 (Ucp2), and β3-AR (Adrb3) in brown adipose tissue (BAT). Overexpression of FLAGΔ256 in T37i cells, which are derived from the hibernoma of SV40 large T antigen transgenic mice, increased expression of PGC-1α protein and Ucp1. Furthermore, knockdown of endogenous FoxO1 in T37i cells increased Pgc1α (Ppargc1a), Pgc1β (Ppargc1b), Ucp1, and Adrb3 gene expression. CONCLUSIONS—These data suggest that FoxO1 modulates energy homeostasis in WAT and BAT through regulation of adipocyte size and adipose tissue–specific gene expression in response to excessive calorie intake.


Cardiovascular Research | 2003

Oxidative stress in the pathogenesis of thoracic aortic aneurysm : Protective role of statin and angiotensin II type 1 receptor blocker

Junya Ejiri; Nobutaka Inoue; Takuro Tsukube; Takashi Munezane; Yutaka Hino; Seiichi Kobayashi; Ken-ichi Hirata; Seinosuke Kawashima; Shinobu Imajoh-Ohmi; Yoshitake Hayashi; Hiroshi Yokozaki; Yutaka Okita; Mitsuhiro Yokoyama

OBJECTIVE The pathogenesis of thoracic aortic aneurysms (TAA) is still unclear. A recent investigation indicated that angiotensin II, a potent activator of NADH/NADPH oxidase, plays an important role in aneurysmal formation. We investigated the potential role of p22phox-based NADH/NADPH oxidase in the pathogenesis of TAA. METHODS Human thoracic aneurysmal (n=40) and non-aneurysmal (control, n=39) aortic sections were examined, and the localization of p22phox, an essential component of the oxidase, and its expressional differences were investigated by immunohistochemistry and Western blot. In situ reactive oxygen species (ROS) generation was examined by the dihydroethidium method, and the impact of medical treatment on p22phox expression was investigated by multiple regression analysis. RESULTS In situ production of ROS and the expression of p22phox increased markedly in TAA throughout the wall, and Western blot confirmed the enhanced expression of p22phox. The expression was more intense in the regions where monocytes/macrophages accumulated. In these inflammatory regions, numerous chymase-positive mast cells and angiotensin converting enzyme-positive macrophages were present. Their localization closely overlapped the in situ activity of matrix metalloproteinase and the expression of p22phox. Multiple regression analysis revealed that medical treatment with statin and angiotensin II type 1 receptor blocker (ARB) suppressed p22phox expression in TAA. CONCLUSION Our findings indicate the role of p22phox-based NADH/NADPH oxidase and the local renin-angiotensin system in the pathogenesis of TAA. Statin and ARB might have inhibitory effects on the formation of aneurysms via the suppression of NADH/NADPH oxidase.


Hypertension | 2001

Reduced Hypoxic Pulmonary Vascular Remodeling by Nitric Oxide From the Endothelium

Masanori Ozaki; Seinosuke Kawashima; Tomoya Yamashita; Yoshitaka Ohashi; Yoshiyuki Rikitake; Nobutaka Inoue; Ken-ichi Hirata; Yoshitake Hayashi; Hiroshi Itoh; Mitsuhiro Yokoyama

We examined whether overproduction of endogenous nitric oxide (NO) can prevent hypoxia-induced pulmonary hypertension and vascular remodeling by using endothelial NO-overexpressing (eNOS-Tg) mice. Male eNOS-Tg mice and their littermates (wild-type, WT) were maintained in normoxic or 10% hypoxic condition for 3 weeks. In normoxia, eNOS protein levels, Ca2+-dependent NOS activity, and cGMP levels in the lung of eNOS-Tg mice were higher than those of WT mice. Activity of eNOS and cGMP production in the lung did not change significantly by hypoxic exposure in either genotype. Chronic hypoxia did not induce iNOS expression nor increase its activity in either genotype. Plasma and lung endothelin-1 levels were increased by chronic hypoxia, but these levels were not significantly different between the 2 genotypes. In hemodynamic analysis, right ventricular systolic pressure (RVSP) in eNOS-Tg mice was similar to that in WT mice in normoxia. Chronic hypoxia increased RVSP and induced right ventricular hypertrophy in both genotypes; however, the degrees of these increases were significantly smaller in eNOS-Tg mice. Histological examination revealed that hypoxic mice showed medial wall thickening in pulmonary arteries. However, the increase of the wall thickening in small arteries (diameter <80 &mgr;m) by chronic hypoxia was inhibited in eNOS-Tg mice. Furthermore, muscularization of small arterioles was significantly attenuated in eNOS-Tg mice. Thus, we demonstrated directly that overproduction of eNOS-derived NO can inhibit not only the increase in RVSP associated with pulmonary hypertension but also remodeling of the pulmonary vasculature and right ventricular hypertrophy induced by chronic hypoxia.


Journal of Clinical Investigation | 2006

The LXXLL motif of murine forkhead transcription factor FoxO1 mediates Sirt1-dependent transcriptional activity

Jun Nakae; Yongheng Cao; Hiroaki Daitoku; Akiyoshi Fukamizu; Wataru Ogawa; Yoshihiko Yano; Yoshitake Hayashi

The forkhead transcription factor FoxO1 has been identified as a negative regulator of insulin/IGF-1 signaling. Its function is inhibited by phosphorylation and nuclear exclusion through a PI3K-dependent pathway. However, the structure/function relationship of FoxO1 has not been elucidated completely. In this study, we carried out mutation analysis of the FoxO1 coactivator-interacting LXXLL motif (amino acids 459-463). Expression of a 3A/LXXAA mutant, in which 3 Akt phosphorylation sites (T24, S253, and S316) and 2 leucine residues in the LXXLL motif (L462 and L463) were replaced by alanine, decreased both Igfbp-1 and G6Pase promoter activity and endogenous Igfbp-1 and G6Pase gene expression in simian virus 40-transformed (SV40-transformed) hepatocytes. Importantly, mutagenesis of the LXXLL motif eliminated FoxO1 interaction with the nicotinamide adenine dinucleotide-dependent (NAD-dependent) deacetylase sirtuin 1 (Sirt1), sustained the acetylated state of FoxO1, and made FoxO1 nicotinamide and resveratrol insensitive, supporting a role for this motif in Sirt1 binding. Furthermore, intravenous administration of adenovirus encoding 3A/LXXAA FoxO1 into Lepr db/db mice decreased fasting blood glucose levels and improved glucose tolerance and was accompanied by reduced G6Pase and Igfbp-1 gene expression and increased hepatic glycogen content. In conclusion, the LXXLL motif of FoxO1 may have an important role for its transcriptional activity and Sirt1 binding and should be a target site for regulation of gene expression of FoxO1 target genes and glucose metabolism in vivo.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2001

Endothelial NO Synthase Overexpression Inhibits Lesion Formation in Mouse Model of Vascular Remodeling

Seinosuke Kawashima; Tomoya Yamashita; Masanori Ozaki; Yoshitaka Ohashi; Hiroshi Azumi; Nobutaka Inoue; Ken-ichi Hirata; Yoshitake Hayashi; Hiroshi Itoh; Mitsuhiro Yokoyama

Abstract —NO produced by endothelial NO synthase (eNOS) plays important roles in the regulation of vascular tone and structure. The purpose of this study was to clarify the role of eNOS-derived NO on vascular remodeling by use of eNOS-transgenic (eNOS-Tg) mice. The common carotid artery was ligated just proximal to the carotid bifurcation. Four weeks later, the proximal carotid artery of the ligation site was histologically examined. In this vascular remodeling model, the endothelium remains uninjured, but neointimal and medial thickening occurs in combination with a reduction in vascular diameter at the proximal portion of the ligation. At 4 weeks after ligation, the respective neointimal and medial areas in wild-type mice were 17 200±1100 and 24 300±1500 &mgr;m2, whereas both were reduced to 8000±1900 (P <0.01) and 18 400±700 &mgr;m2 (P <0.01) in eNOS-Tg mice (n=8). Total vascular area was not different between the 2 genotypes. NG-Nitro-l-arginine methyl ester treatment increased neointimal and medial areas to the same extent in both genotypes. Leukocyte infiltration was observed in the luminal side of the vessel, but the number of infiltrating cells was significantly attenuated in eNOS-Tg mice compared with wild-type mice. This reduction of leukocyte infiltration in eNOS-Tg mice was associated with reduced expressions of intracellular adhesion molecule-1 and vascular cellular adhesion molecule-1 on the endothelium. In conclusion, chronic eNOS overexpression in the endothelium reduced leukocyte infiltration and inhibited neointimal formation and medial thickening. Our data provide the evidence for the regulatory role of NO from the endothelium on vascular structure integrity.

Collaboration


Dive into the Yoshitake Hayashi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge