Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoshito Takeda is active.

Publication


Featured researches published by Yoshito Takeda.


Journal of Cell Biology | 2003

Tetraspanins CD9 and CD81 function to prevent the fusion of mononuclear phagocytes

Yoshito Takeda; Isao Tachibana; Kenji Miyado; Masatoshi Kobayashi; Toru Miyazaki; Toshiki Funakoshi; Hiromi Kimura; Hiroyuki Yamane; Yoshiyuki Saito; Hiroyuki Goto; Tsutomu Yoneda; Mitsuhiro Yoshida; Toru Kumagai; Tadashi Osaki; Seiji Hayashi; Ichiro Kawase; Eisuke Mekada

Tetraspanins CD9 and CD81 facilitate the fusion between gametes, myoblasts, or virus-infected cells. Here, we investigated the role of these tetraspanins in the fusion of mononuclear phagocytes. Expression of CD9 and CD81 and their complex formation with integrins were up-regulated when blood monocytes were cultured under normal conditions. Under fusogenic conditions in the presence of Con A, CD9 and CD81 up-regulation was inhibited, and their complex formation with integrins was down-regulated. Anti-CD9 and -CD81 antibodies, which were previously shown to inhibit the fusion of gametes, myoblasts, and virus-infected cells, unexpectedly promoted the fusion of monocytes and alveolar macrophages. However, these effects were not due to altered cell adhesion, aggregation, or cytokine production. When stimulated in vitro or in vivo, alveolar macrophages and bone marrow cells of CD9- and CD81-null mice formed larger numbers of multinucleated cells than those of wild-type mice. Finally, CD9/CD81 double-null mice spontaneously developed multinucleated giant cells in the lung and showed enhanced osteoclastogenesis in the bone. These results suggest that CD9 and CD81 coordinately prevent the fusion of mononuclear phagocytes.


Oncogene | 2003

Expression of tetraspanins in human lung cancer cells: frequent downregulation of CD9 and its contribution to cell motility in small cell lung cancer

Toshiki Funakoshi; Isao Tachibana; Yoshihiko Hoshida; Hiromi Kimura; Yoshito Takeda; Takashi Kijima; Kazumi Nishino; Hiroyuki Goto; Tsutomu Yoneda; Toru Kumagai; Tadashi Osaki; Seiji Hayashi; Katsuyuki Aozasa; Ichiro Kawase

Small cell lung cancer (SCLC) invades locally and metastasizes distantly extremely early when compared with nonsmall cell lung cancer (NSCLC). The underlying molecular mechanisms, however, have not been elucidated. Accumulating evidence suggests that downregulation of several members of tetraspanins is associated with progression of solid tumors, thus indicating poor prognosis. Here we screened 30 lung cancer cell lines for expression of tetraspanins, CD9, CD63, CD81, CD82, CD151, and NAG-2. Flow cytometry revealed that, among these proteins, CD9 is broadly expressed in NSCLC lines, but is absent or highly reduced in most SCLC lines (P<0.0001). Using the Boyden chamber and videomicroscopic cell motility assays, we showed that stable transfection of CD9 into an SCLC line, OS3-R5, reduced cell motility on fibronectin. Furthermore, by transient transfection of green fluorescent protein (GFP)-tagged CD9 into three other SCLC lines, we observed that SCLC cells expressing GFP-CD9 were uniformly less motile than untransfected cells. CD9 or GFP-CD9 was associated with β1 integrins and distributed at the tumor cell periphery and cell–cell contacts, suggesting that CD9 modifies β1 integrin function to reduce motility. These findings suggest that low expression of CD9 may contribute to the highly invasive and metastatic phenotype of SCLC.


Clinical Cancer Research | 2012

Early [18F]Fluorodeoxyglucose Positron Emission Tomography at Two Days of Gefitinib Treatment Predicts Clinical Outcome in Patients with Adenocarcinoma of the Lung

Ryo Takahashi; Haruhiko Hirata; Isao Tachibana; Eku Shimosegawa; Atsuo Inoue; Izumi Nagatomo; Yoshito Takeda; Hiroshi Kida; Sho Goya; Takashi Kijima; Mitsuhiro Yoshida; Toru Kumagai; Atsushi Kumanogoh; Meinoshin Okumura; Jun Hatazawa; Ichiro Kawase

Purpose: Positron emission tomography (PET) with [18F]fluorodeoxyglucose (FDG) is increasingly used in early assessment of tumor response after chemotherapy. We investigated whether a change in [18F]FDG uptake at 2 days of gefitinib treatment predicts outcome in patients with lung adenocarcinoma. Experimental Design: Twenty patients were enrolled. [18F]FDG-PET/computed tomographic (CT) scan was carried out before and 2 days after gefitinib treatment. Maximum standardized uptake values (SUV) were measured, and post-gefitinib percentage changes in SUV were calculated. Early metabolic response (SUV decline < −25%) was compared with morphologic response evaluated by CT scan and with progression-free survival (PFS). Results: At 2 days of gefitinib treatment, 10 patients (50%) showed metabolic response, 8 had metabolic stable disease, and 2 had progressive metabolic disease. Percentage changes of SUV at 2 days were correlated with those of tumor size in CT at 1 month (R2 = 0.496; P = 0.0008). EGFR gene was assessable in 15 patients, and of 12 patients with EGFR mutations, 8 showed metabolic response at 2 days and 6 showed morphologic response at 1 month. None of 3 patients with wild-type EGFR showed metabolic or morphologic response. Metabolic response at 2 days was not statistically associated with PFS (P = 0.095), but when a cutoff value of −20% in SUV decline was used, metabolic responders had longer PFS (P < 0.0001). Conclusion: Early assessment of [18F]FDG tumor uptake with PET at 2 days of gefitinib treatment could be useful to predict clinical outcome earlier than conventional CT evaluation in patients with lung adenocarcinoma. Clin Cancer Res; 18(1); 220–8. ©2011 AACR.


Journal of Immunology | 2009

Tetraspanin CD9 Negatively Regulates Lipopolysaccharide-Induced Macrophage Activation and Lung Inflammation

Mayumi Suzuki; Isao Tachibana; Yoshito Takeda; Ping He; Seigo Minami; Takeo Iwasaki; Hiroshi Kida; Sho Goya; Takashi Kijima; Mitsuhiro Yoshida; Toru Kumagai; Tadashi Osaki; Ichiro Kawase

Tetraspanins facilitate the formation of multiple molecular complexes at specialized membrane microdomains and regulate cell activation and motility. In the present study, the role of tetraspanin CD9 in LPS-induced macrophage activation and lung inflammation was investigated in vitro and in vivo. When CD9 function was ablated with mAb treatment, small interfering RNA transfection, or gene knockout in RAW264.7 cells or bone marrow-derived macrophages, these macrophages produced larger amounts of TNF-α, matrix metalloproteinase-2, and -9 upon stimulation with LPS in vitro, when compared with control cells. Sucrose gradient analysis revealed that CD9 partly colocalized with the LPS-induced signaling mediator, CD14, at low-density light membrane fractions. In CD9 knockout macrophages, CD14 expression, CD14 and TLR4 localization into the lipid raft, and their complex formation were increased whereas IκBα expression was decreased when compared with wild-type cells, suggesting that CD9 prevents the formation of LPS receptor complex. Finally, deletion of CD9 in mice enhanced macrophage infiltration and TNF-α production in the lung after intranasal administration of LPS in vivo, when compared with wild-type mice. These results suggest that macrophage CD9 negatively regulates LPS response at lipid-enriched membrane microdomains.


Journal of Biological Chemistry | 2008

Double Deficiency of Tetraspanins CD9 and CD81 Alters Cell Motility and Protease Production of Macrophages and Causes Chronic Obstructive Pulmonary Disease-like Phenotype in Mice

Yoshito Takeda; Ping He; Isao Tachibana; Bo Zhou; Kenji Miyado; Hideshi Kaneko; Mayumi Suzuki; Seigo Minami; Takeo Iwasaki; Sho Goya; Takashi Kijima; Toru Kumagai; Mitsuhiro Yoshida; Tadashi Osaki; Toshihisa Komori; Eisuke Mekada; Ichiro Kawase

CD9 and CD81 are closely related tetraspanins that regulate cell motility and signaling by facilitating the organization of multimolecular membrane complexes, including integrins. We show that CD9 and CD81 are down-regulated in smoking-related inflammatory response of a macrophage line, RAW264.7. When functions of CD9 and CD81 were ablated with monoclonal antibody treatment, small interfering RNA transfection, or gene knock-out, macrophages were less motile and produced larger amounts of matrix metalloproteinase (MMP)-2 and MMP-9 than control cells in vitro. In line with this, CD9/CD81 double-knock-out mice spontaneously developed pulmonary emphysema, a major pathological component of chronic obstructive pulmonary disease (COPD). The mutant lung contained an increased number of alveolar macrophages with elevated activities of MMP-2 and MMP-9 and progressively displayed enlarged airspace and disruption of elastic fibers in the alveoli. Secretory cell metaplasia, a finding similar to goblet cell metaplasia in cigarette smokers, was also observed in the epithelium of terminal bronchioles. With aging, the double-knockout mice showed extrapulmonary phenotypes, including weight loss, kyphosis, and osteopenia. These results suggest that the tetraspanins CD9 and CD81 regulate cell motility and protease production of macrophages and that their dysfunction may underlie the progression of COPD.


American Journal of Respiratory and Critical Care Medicine | 2011

Involvement of Endothelial Apoptosis Underlying Chronic Obstructive Pulmonary Disease―like Phenotype in Adiponectin-null Mice: Implications for Therapy

Kaori Nakanishi; Yoshito Takeda; Satoshi Tetsumoto; Takeo Iwasaki; Kazuyuki Tsujino; Hanako Kuhara; Yingji Jin; Izumi Nagatomo; Hiroshi Kida; Sho Goya; Takashi Kijima; Norikazu Maeda; Tohru Funahashi; Iichiro Shimomura; Isao Tachibana; Ichiro Kawase

RATIONALE Chronic obstructive pulmonary disease is frequently complicated with comorbidities, such as cardiovascular disease, osteoporosis, and body weight loss, but the causal link remains unclear. OBJECTIVES To investigate the role of adiponectin in the pathogenesis of chronic obstructive pulmonary disease and its potential use in therapy. METHODS Adiponectin localization and dynamics in the lung were analyzed in an elastase-induced emphysema model. Next, the lung of adiponectin-knockout mice, extrapulmonary effects, and the underlying mechanism were investigated. Finally, we tested whether exogenous adiponectin could ameliorate the emphysematous change in adiponectin-knockout mice. MEASUREMENTS AND MAIN RESULTS Adiponectin expression in lung vasculature and plasma concentration of adiponectin were reduced after elastase-instillation. Notably, adiponectin-knockout mice showed progressive alveolar enlargement and increased lung compliance. They further exhibited not only systemic inflammation, but also extrapulmonary phenotype, such as body weight loss, fat atrophy, and osteoporosis. Moreover, endothelial apoptosis was enhanced in the lungs of adiponectin-knockout mice, as evidenced by caspase-3 activity. Consistent with this, expressions of vascular endothelial growth factor receptor-2 and platelet endothelial cell adhesion molecule-1 on endothelial cells were decreased in the adiponectin-knockout mice. Finally, adenovirus-mediated adiponectin supplementation ameliorated the emphysematous phenotype. CONCLUSIONS Adiponectin-knockout mice develop progressive chronic obstructive pulmonary disease-like phenotype with systemic inflammation and extrapulmonary phenotypes. Hypoadiponectinemia could thus play a critical role in the progression of chronic obstructive pulmonary disease and concomitant comorbidities through endothelial dysfunction. Together, adiponectin could be a novel target for chronic obstructive pulmonary disease therapy.


Cancer Research | 2010

Cell Surface Tetraspanin CD9 Mediates Chemoresistance in Small Cell Lung Cancer

Satoshi Kohmo; Takashi Kijima; Yasushi Otani; Masahide Mori; Toshiyuki Minami; Ryo Takahashi; Izumi Nagatomo; Yoshito Takeda; Hiroshi Kida; Sho Goya; Mitsuhiro Yoshida; Toru Kumagai; Isao Tachibana; Soichiro Yokota; Ichiro Kawase

Small cell lung cancer (SCLC) is an aggressive malignancy with extremely high mortality due to the appearance of widespread metastases early in its clinical course and rapid acquisition of chemoresistance after initial therapy. A theory of cell adhesion-mediated drug resistance is thought to be a principal mechanism in which extracellular matrix proteins provide a survival advantage against cytotoxic drug-induced apoptosis. We found that the tetraspanin family member CD9 was expressed preferentially in SCLC tumors and metastases from three of seven relapsed patients, whereas chemonaïve primary tumors from 16 patients were CD9 negative with only one exception. Additionally, CD9 was highly expressed on SCLC cell lines rendered resistant to cisplatin or etoposide, and was upregulated in parental chemosensitive cells within 48 hours after exposure to either of these compounds. CD9-expressing chemoresistant SCLC cells adhered more tightly to fibronectin via β1 integrin, but they were less motile than the respective chemosensitive parental lines. Notably, treatment of the chemoresistant cells with chemokine CXCL12 downregulated CD9 and transiently restored motility. Moreover, selective targeting of CD9 by treatment with specific monoclonal antibody ALB6 or a small interfering RNA triggered apoptosis in the chemoresistant cells. Taken together, our findings implicate CD9 in the cell adhesion-mediated drug resistance mechanism, highlighting CD9 as an attractive therapeutic target to improve therapeutic outcomes in SCLC.


Blood | 2011

Diminished metastasis in tetraspanin CD151-knockout mice

Yoshito Takeda; Qinglin Li; Alexander R. Kazarov; Mathieu Epardaud; Kutlu G. Elpek; Shannon J. Turley; Martin E. Hemler

Tetraspanin protein CD151 on tumor cells supports invasion and metastasis. In the present study, we show that host animal CD151 also plays a critical role. CD151-null mice showed markedly diminished experimental lung metastasis after injection of Lewis lung carcinoma or B16F10 melanoma cells. Diminished tumor cell residence in the lungs was evident 6-24 hours after injection. Consistent with an endothelial cell deficiency, isolated CD151-null mouse lung endothelial cells showed diminished support for B16F10 adhesion and transendothelial migration, diminished B16F10-induced permeability, and diminished B16F10 adhesion to extracellular matrix deposited by CD151-null mouse lung endothelial cells. However, CD151 deletion did not affect the size of metastatic foci or subcutaneous primary B16F10 tumors, tumor aggregation, tumor clearance from the blood, or tumor-induced immune cell activation and recruitment. Therefore, the effects of host CD151 on metastasis do not involve altered local tumor growth or immune surveillance. VEGF-induced endothelial cell signaling through Src and Akt was diminished in CD151-null endothelial cells. However, deficient signaling was not accompanied by reduced endothelial permeability either in vitro (monolayer permeability assay) or in vivo (VEGF-stimulated Miles assay). In summary, diminished metastasis in CD151-null host animals may be due to impaired tumor-endothelial interactions, with underlying defects in mouse lung endothelial cell extracellular matrix production.


Patient Preference and Adherence | 2014

Efficacy and safety of pirfenidone for idiopathic pulmonary fibrosis

Yoshito Takeda; Kazuyuki Tsujino; Takashi Kijima; Atsushi Kumanogoh

Idiopathic pulmonary fibrosis (IPF) is a devastating chronic fibrotic lung disease. Although the precise cause of the disease is still unknown, recent studies have shown that the pathogenesis of pulmonary fibrosis involves multiple mechanisms, with abnormal behavior of alveolar epithelial cells considered a primary event. Pirfenidone is a multifunctional, orally available small molecule with anti-fibrotic, anti-inflammatory, and antioxidative activities, and has been shown to be a modulator of cytokines and growth factors, including TGF-β1, TNF-α, bFGF, IFN-γ, IL-1β, and IL-18 in animal models. Although its precise mechanism of action is not currently clear, pirfenidone is considered to exert inhibitory effects on multiple pathways involved in the pathogenesis of IPF. Two randomized placebo-controlled clinical trials in Japan demonstrated that pirfenidone significantly reduced the rate of decline of vital capacity in IPF patients. A Phase III study showed a significant increase in progression-free survival of patients in pirfenidone-treated groups compared to the placebo group. These results paved the way for the approval of pirfenidone for the treatment of IPF patients in Japan in 2008. The promising results of the Phase II study in Japan led to a larger international Phase III trial (CAPACITY). Subsequently, pirfenidone has also been approved in the European Union, South Korea, and Canada to date. Pirfenidone treatment is generally tolerated. Major adverse events are gastrointestinal symptoms, including decreased appetite, abdominal discomfort and nausea, photosensitivity, and fatigue, but many of these are mild and manageable. Clinical experience has shown that reduction in pirfenidone dose and the supportive use of gastrointestinal drugs are effective ways to manage these symptoms. Thus, pirfenidone treatment provides a means of intervention in the clinical course of IPF, and is a promising candidate for improving patient prognosis. For future development, it is important to establish the appropriate modality of treatment with pirfenidone and/or novel potential drugs.


American Journal of Respiratory and Critical Care Medicine | 2012

Tetraspanin CD151 Protects against Pulmonary Fibrosis by Maintaining Epithelial Integrity

Kazuyuki Tsujino; Yoshito Takeda; Toru Arai; Yasushi Shintani; Ryosaku Inagaki; Hiroyuki Saiga; Takeo Iwasaki; Satoshi Tetsumoto; Yingji Jin; Shoichi Ihara; Toshiyuki Minami; Mayumi Suzuki; Izumi Nagatomo; Koji Inoue; Hiroshi Kida; Takashi Kijima; Mari Ito; Masanori Kitaichi; Yoshikazu Inoue; Isao Tachibana; Kiyoshi Takeda; Meinoshin Okumura; Martin E. Hemler; Atsushi Kumanogoh

RATIONALE Idiopathic pulmonary fibrosis (IPF) is a chronic pulmonary disorder of unknown etiology with few treatment options. Although tetraspanins are involved in various diseases, their roles in fibrosis have not been determined. OBJECTIVES To investigate the role of tetraspanin CD151 in pulmonary fibrosis. METHODS CD151 knockout (KO) mice were studied by histological, biochemical, and physiological analyses and compared with wild-type mice and CD9 KO mice. Further mechanistic analyses were performed in vitro, in vivo, and on samples from patients with IPF. MEASUREMENTS AND MAIN RESULTS A microarray study identified an enrichment of genes involved in connective tissue disorders in the lungs of CD151 KO mice, but not in CD9 KO mice. Consistent with this, CD151 KO mice spontaneously exhibited age-related pulmonary fibrosis. Deletion of CD151 did not affect pulmonary fibroblast functions but instead degraded epithelial integrity via attenuated adhesion strength on the basement membrane; CD151-deleted alveolar epithelial cells exhibited increased α-SMA expression with activation of p-Smad2, leading to fibrotic changes in the lungs. This loss of epithelial integrity in CD151 KO lungs was further exacerbated by intratracheal bleomycin exposure, resulting in severe fibrosis with increased mortality. We also observed decreased numbers of CD151-positive alveolar epithelial cells in patients with IPF. CONCLUSIONS CD151 is essential for normal function of alveolar epithelial cells; loss of CD151 causes pulmonary fibrosis as a result of epithelial disintegrity. Given that CD151 may protect against fibrosis, this protein represents a novel target for the treatment of fibrotic diseases.

Collaboration


Dive into the Yoshito Takeda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge