Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoshitomo Oka is active.

Publication


Featured researches published by Yoshitomo Oka.


Nature Genetics | 2008

Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus

Kazuki Yasuda; Kazuaki Miyake; Yukio Horikawa; Kazuo Hara; Haruhiko Osawa; Hiroto Furuta; Yushi Hirota; Hiroyuki Mori; Anna Maria Jönsson; Yoshifumi Sato; Kazuya Yamagata; Yoshinori Hinokio; Heyao Wang; Toshihito Tanahashi; Naoto Nakamura; Yoshitomo Oka; Naoko Iwasaki; Yasuhiko Iwamoto; Yuichiro Yamada; Yutaka Seino; Hiroshi Maegawa; Atsunori Kashiwagi; Jun Takeda; Eiichi Maeda; Hyoung Doo Shin; Young Min Cho; Kyong Soo Park; Hong Kyu Lee; Maggie C.Y. Ng; Ronald C.W. Ma

We carried out a multistage genome-wide association study of type 2 diabetes mellitus in Japanese individuals, with a total of 1,612 cases and 1,424 controls and 100,000 SNPs. The most significant association was obtained with SNPs in KCNQ1, and dense mapping within the gene revealed that rs2237892 in intron 15 showed the lowest P value (6.7 × 10−13, odds ratio (OR) = 1.49). The association of KCNQ1 with type 2 diabetes was replicated in populations of Korean, Chinese and European ancestry as well as in two independent Japanese populations, and meta-analysis with a total of 19,930 individuals (9,569 cases and 10,361 controls) yielded a P value of 1.7 × 10−42 (OR = 1.40; 95% CI = 1.34–1.47) for rs2237892. Among control subjects, the risk allele of this polymorphism was associated with impairment of insulin secretion according to the homeostasis model assessment of β-cell function or the corrected insulin response. Our data thus implicate KCNQ1 as a diabetes susceptibility gene in groups of different ancestries.


Journal of Diabetes Investigation | 2012

International clinical harmonization of glycated hemoglobin in Japan: From Japan Diabetes Society to National Glycohemoglobin Standardization Program values

Atsunori Kashiwagi; Masato Kasuga; Eiichi Araki; Yoshitomo Oka; Toshiaki Hanafusa; Hiroshi Ito; Makoto Tominaga; Shinichi Oikawa; Mitsuhiko Noda; Takahiko Kawamura; Tokio Sanke; Mitsuyoshi Namba; Mitsuru Hashiramoto; Takayuki Sasahara; Yoshihiko Nishio; Katsuhiko Kuwa; Kohjiro Ueki; Izumi Takei; Masao Umemoto; Masami Murakami; Minoru Yamakado; Yutaka Yatomi; Hatsumi Ohashi

In 1999, the Japan Diabetes Society (JDS) launched the previous version of the diagnostic criteria of diabetes mellitus, in which JDS took initiative in adopting glycated hemoglobin (HbA1c) as an adjunct to the diagnosis of diabetes. In contrast, in 2009 the International Expert Committee composed of the members of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD) manifested the recommendation regarding the use of HbA1c in diagnosing diabetes mellitus as an alternative to glucose measurements based on the updated evidence showing that HbA1c has several advantages as a marker of chronic hyperglycemia2–4. The JDS extensively evaluated the usefulness and feasibility of more extended use of HbA1c in the diagnosis of diabetes based on Japanese epidemiological data, and then the ‘Report of the Committee on the Classification and Diagnostic Criteria of Diabetes Mellitus’ was published in the Journal of Diabetes Investigation5 and Diabetology International6. The new diagnostic criterion in Japan came into effect on 1 July 2010. According to the new version of the criteria, HbA1c (JDS) ≥6.1% is now considered to indicate a diabetic type, but the previous diagnosis criteria of high plasma glucose (PG) levels to diagnose diabetes mellitus also need to be confirmed. Those are as follows: (i) FPG ≥126 mg/dL (7.0 mmol/L); (ii) 2‐h PG ≥200 mg/dL (11.1 mmol/L) during an oral glucose tolerance test; or (iii) casual PG ≥200 mg/dL (11.1 mmol/L). If both PG criteria and HbA1c in patients have met the diabetic type, those patients are immediately diagnosed to have diabetes mellitus5,6.


Nature Genetics | 1998

A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome)

Hiroshi Inoue; Yukio Tanizawa; Jon Wasson; Philip Behn; Kamini Kalidas; Ernesto Bernal-Mizrachi; Mike Mueckler; Helen Marshall; Helen Donis-Keller; Patricia Crock; Douglas Rogers; Masahiko Mikuni; Hisashi Kumashiro; Koichiro Higashi; Gen Sobue; Yoshitomo Oka; M. Alan Permutt

Wolfram syndrome (WFS; OMIM 222300) is an autosomal recessive neurodegenerative disorder defined by young-onset non-immune insulin-dependent diabetes mellitus and progressive optic atrophy. Linkage to markers on chromosome 4p was confirmed in five families. On the basis of meiotic recombinants and disease-associated haplotypes, the WFS gene was localized to a BAC/P1 contig of less than 250 kb. Mutations in a novel gene (WFS1) encoding a putative transmembrane protein were found in all affected individuals in six WFS families, and these mutations were associated with the disease phenotype. WFS1 appears to function in survival of islet ß-cells and neurons.


Diabetologia | 1993

Pancreatic beta cell line MIN6 exhibits characteristics of glucose metabolism and glucose-stimulated insulin secretion similar to those of normal islets

Hisamitsu Ishihara; Tomoichiro Asano; Katsunori Tsukuda; Hideki Katagiri; Kouichi Inukai; Motonobu Anai; Masatoshi Kikuchi; Yoshio Yazaki; J.-I. Miyazaki; Yoshitomo Oka

SummaryGlucose-stimulated insulin secretion, glucose transport, glucose phosphorylation and glucose utilization have been characterized in the insulinoma cell line MIN6, which is derived from a transgenic mouse expressing the large T-antigen of SV40 in pancreatic beta cells. Glucose-stimulated insulin secretion occurred progressively from 5 mmol/l glucose, reached the maximal level approximately seven-fold above the basal level at 25 mmol/l, and remained at this level up to 50 mmol/l. Glucose transport was very rapid with the half-maximal uptake of 3-O-methyl-d-glucose being reached within 15 s at 22 °C. Glucose phosphorylating activity in the cell homogenate was due mainly to glucokinase; the Vmax value of glucokinase activity was estimated to be 255±37 nmol·h−1·mg protein−1, constituting approximately 80% of total phosphorylating activity, whereas hexokinase activity constituted less than 20%. MIN6 cells exhibited mainly the high Km component of glucose utilization with a Vmax of 289±18 nmol·h−1·mg protein−1. Thus, glucose utilization quantitatively and qualitatively reflected glucose phosphorylation in MIN6 cells. In contrast, MIN7 cells, which exhibited only a small increase in insulin secretion in response to glucose, had 4.7-fold greater hexokinase activity than MIN6 cells with a comparable activity of glucokinase. These characteristics in MIN6 cells are very similar to those of isolated islets, indicating that this cell line is an appropriate model for studying the mechanism of glucose-stimulated insulin secretion in pancreatic beta cells.


Journal of Biological Chemistry | 1998

Type I Phosphatidylinositol-4-phosphate 5-Kinases CLONING OF THE THIRD ISOFORM AND DELETION/SUBSTITUTION ANALYSIS OF MEMBERS OF THIS NOVEL LIPID KINASE FAMILY

Hisamitsu Ishihara; Yoshikazu Shibasaki; Nobuaki Kizuki; Takako Wada; Yoshio Yazaki; Tomoichiro Asano; Yoshitomo Oka

Type I phosphatidylinositol 4-phosphate (PtdIns(4)P) 5-kinases (PIP5K) catalyze the synthesis of phosphatidylinositol 4,5-bisphosphate, an essential lipid molecule in various cellular processes. Here, we report the cloning of the third member (PIP5Kγ) and the characterization of members of the type I PIP5K family. Type I PIP5Kγ has two alternative splicing forms, migrating at 87 and 90 kDa on SDS-polyacrylamide gel electrophoresis. The amino acid sequence of the central portion of this isoform shows approximately 80% identity with those of the α and β isoforms. Northern blot analysis revealed that the γ isoform is highly expressed in the brain, lung, and kidneys. Among three isoforms, the β isoform has the greatest V max value for the PtdIns(4)P kinase activity and the γ isoform is most markedly stimulated by phosphatidic acid. By analyzing deletion mutants of the three isoforms, the minimal kinase core sequence of these isoforms were determined as an approximately 380-amino acid region. In addition, carboxyl-terminal regions of the β and γ isoforms were found to confer the greatest V max value and the highest phosphatidic acid sensitivity, respectively. It was also discovered that lysine 138 in the putative ATP binding motif of the α isoform is essential for the PtdIns(4)P kinase activity. As was the case with the α isoform reported previously (Shibasaki, Y., Ishihara, H., Kizuki, N., Asano, T., Oka, Y., Yazaki, Y. (1997) J. Biol. Chem.272, 7578–7581), overexpression of either the β or the γ isoform induced an increase in short actin fibers and a decrease in actin stress fibers in COS7 cells. Surprisingly, a kinase-deficient substitution mutant also induced an abnormal actin polymerization, suggesting a role of PIP5Ks via structural interactions with other molecules.


Journal of Clinical Investigation | 2010

Wolfram syndrome 1 gene negatively regulates ER stress signaling in rodent and human cells

Sonya G. Fonseca; Shinsuke Ishigaki; Christine M. Oslowski; Simin Lu; Kathryn L. Lipson; Rajarshi Ghosh; Emiko Hayashi; Hisamitsu Ishihara; Yoshitomo Oka; M. Alan Permutt; Fumihiko Urano

Wolfram syndrome is an autosomal-recessive disorder characterized by insulin-dependent diabetes mellitus, caused by nonautoimmune loss of beta cells, and neurological dysfunctions. We have previously shown that mutations in the Wolfram syndrome 1 (WFS1) gene cause Wolfram syndrome and that WFS1 has a protective function against ER stress. However, it remained to be determined how WFS1 mitigates ER stress. Here we have shown in rodent and human cell lines that WFS1 negatively regulates a key transcription factor involved in ER stress signaling, activating transcription factor 6alpha (ATF6alpha), through the ubiquitin-proteasome pathway. WFS1 suppressed expression of ATF6alpha target genes and repressed ATF6alpha-mediated activation of the ER stress response element (ERSE) promoter. Moreover, WFS1 stabilized the E3 ubiquitin ligase HRD1, brought ATF6alpha to the proteasome, and enhanced its ubiquitination and proteasome-mediated degradation, leading to suppression of ER stress signaling. Consistent with these data, beta cells from WFS1-deficient mice and lymphocytes from patients with Wolfram syndrome exhibited dysregulated ER stress signaling through upregulation of ATF6alpha and downregulation of HRD1. These results reveal a role for WFS1 in the negative regulation of ER stress signaling and in the pathogenesis of diseases involving chronic, unresolvable ER stress, such as pancreatic beta cell death in diabetes.


Science | 2006

Neuronal Pathway from the Liver Modulates Energy Expenditure and Systemic Insulin Sensitivity

Kenji Uno; Hideki Katagiri; Tetsuya Yamada; Yasushi Ishigaki; Takehide Ogihara; Junta Imai; Yutaka Hasegawa; Junhong Gao; Keizo Kaneko; Hiroko Iwasaki; Hisamitsu Ishihara; Hironobu Sasano; Kouichi Inukai; Hiroyuki Mizuguchi; Tomoichiro Asano; Masakazu Shiota; Masamitsu Nakazato; Yoshitomo Oka

Coordinated control of energy metabolism and glucose homeostasis requires communication between organs and tissues. We identified a neuronal pathway that participates in the cross talk between the liver and adipose tissue. By studying a mouse model, we showed that adenovirus-mediated expression of peroxisome proliferator–activated receptor (PPAR)–g2 in the liver induces acute hepatic steatosis while markedly decreasing peripheral adiposity. These changes were accompanied by increased energy expenditure and improved systemic insulin sensitivity. Hepatic vagotomy and selective afferent blockage of the hepatic vagus revealed that the effects on peripheral tissues involve the afferent vagal nerve. Furthermore, an antidiabetic thiazolidinedione, a PPARg agonist, enhanced this pathway. This neuronal pathway from the liver may function to protect against metabolic perturbation induced by excessive energy storage.


Diabetes Care | 2006

Long-Term Clinical Effects of Epalrestat, an Aldose Reductase Inhibitor, on Diabetic Peripheral Neuropathy The 3-year, multicenter, comparative Aldose Reductase Inhibitor-Diabetes Complications Trial

Nigishi Hotta; Yasuo Akanuma; Ryuzo Kawamori; Kempei Matsuoka; Yoshitomo Oka; Motoaki Shichiri; Takayoshi Toyota; Mitsuyoshi Nakashima; Isao Yoshimura; Nobuo Sakamoto; Yukio Shigeta

OBJECTIVE—We sought to evaluate the long-term efficacy and safety of epalrestat, an aldose reductase inhibitor, on diabetic peripheral neuropathy. RESEARCH DESIGN AND METHODS—Subjects with diabetic neuropathy, median motor nerve conduction velocity (MNCV) ≥40 m/s, and HbA1c ≤9% were enrolled in this open-label, multicenter study and randomized to 150 mg/day epalrestat or a control group. After excluding the withdrawals, 289 (epalrestat group) and 305 (control group) patients were included in the analyses. The primary end point was change from baseline in median MNCV at 3 years. Secondary end points included assessment of other somatic nerve function parameters (minimum F-wave latency [MFWL] of the median motor nerve and vibration perception threshold [VPT]), cardiovascular autonomic nerve function, and subjective symptoms. RESULTS—Over the 3-year period, epalrestat prevented the deterioration of median MNCV, MFWL, and VPT seen in the control group. The between-group difference in change from baseline in median MNCV was 1.6 m/s (P < 0.001). Although a benefit with epalrestat was observed in cardiovascular autonomic nerve function variables, this did not reach statistical significance compared with the control group. Numbness of limbs, sensory abnormality, and cramping improved significantly with epalrestat versus the control group. The effects of epalrestat on median MNCV were most evident in subjects with better glycemic control and with no or mild microangiopathies. CONCLUSIONS—Long-term treatment with epalrestat is well tolerated and can effectively delay the progression of diabetic neuropathy and ameliorate the associated symptoms of the disease, particularly in subjects with good glycemic control and limited microangiopathy.


British Journal of Haematology | 2004

Molecular mimicry by Helicobacter pylori CagA protein may be involved in the pathogenesis of H. pylori‐associated chronic idiopathic thrombocytopenic purpura

Toru Takahashi; Toshiaki Yujiri; Kenji Shinohara; Yusuke Inoue; Yutaka Sato; Yasuhiko Fujii; Masashi Okubo; Yuzuru Zaitsu; Koichi Ariyoshi; Yukinori Nakamura; Ryouhei Nawata; Yoshitomo Oka; Mutsunori Shirai; Yukio Tanizawa

The eradication of Helicobacter pylori often leads to platelet recovery in patients with chronic idiopathic thrombocytopenic purpura (cITP). Although this clinical observation suggests the involvement of H. pylori, little is known about the pathogenesis of cITP. We initially examined the effect of H. pylori eradication on platelet counts in 20 adult Japanese cITP patients. Then, using platelet eluates as the probe in immunoblot analyses, we examined the role of molecular mimicry in the pathogenesis of cITP. Helicobacter pylori infection was detected in 75% (15 of 20) of cITP patients. Eradication was achieved in 13 (87%) of the H. pylori‐positive patients, seven (54%) of which showed increased platelet counts within the 4 months following treatment. Completely responsive patients also showed significant declines in platelet‐associated immunoglobulin G (PAIgG) levels. Platelet eluates from 12 (nine H. pylori‐positive and three H. pylori‐negative) patients recognized H. pylori cytotoxin‐associated gene A (CagA) protein, and in three completely responsive patients, levels of anti‐CagA antibody in platelet eluates declined after eradication therapy. Cross‐reactivity between PAIgG and H. pylori CagA protein suggests that molecular mimicry by CagA plays a key role in the pathogenesis of a subset of cITP patients.


Circulation Research | 2007

Adiposity and Cardiovascular Disorders Disturbance of the Regulatory System Consisting of Humoral and Neuronal Signals

Hideki Katagiri; Tetsuya Yamada; Yoshitomo Oka

Obesity, a major healthcare issue, is associated with significant cardiovascular morbidities, including hypertension and atherosclerosis. Numerous intensive studies conducted this decade have revealed that adipose tissue is a major endocrine organ that secretes a variety of bioactive substances, termed adipocytokines. Adipocytokine secretion profiles are altered as obesity develops, which may increase the risk of obesity-related cardiovascular disorders. For instance, leptin is upregulated in obese subjects and plays important roles in the pathophysiology of obesity-related atherogenesis through multiple mechanisms, such as its proliferative, proinflammatory, prothrombotic, and prooxidant actions. In contrast, adiponectin, which is downregulated in obese subjects, has protective effects against cardiovascular disorders at various atherogenic stages. In addition to these factors secreted by adipose tissue, neuronal circuits involving autonomic nerves are now being recognized as an important metabolic regulatory system and have thus attracted considerable attentions. Alterations in fat accumulation in intraabdominal organs, such as visceral adipose tissue and the liver, send afferent neuronal signals to the brain, leading to modulation of sympathetic tonus and thereby affecting the vasculature. Moreover, these humoral and neuronal signaling pathways communicate with each other, resulting in cooperative metabolic regulation among tissues/organs throughout the body. Further elucidation of these regulatory systems is anticipated to lead to new approaches to devising therapeutic strategies for the metabolic syndrome.

Collaboration


Dive into the Yoshitomo Oka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kouichi Inukai

Saitama Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge