Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoshitomo Suhara is active.

Publication


Featured researches published by Yoshitomo Suhara.


Journal of Biological Chemistry | 2000

Evidence That 2-Arachidonoylglycerol but Not N-Palmitoylethanolamine or Anandamide Is the Physiological Ligand for the Cannabinoid CB2 Receptor COMPARISON OF THE AGONISTIC ACTIVITIES OF VARIOUS CANNABINOID RECEPTOR LIGANDS IN HL-60 CELLS

Takayuki Sugiura; Sachiko Kondo; Seishi Kishimoto; Tomoyuki Miyashita; Shinji Nakane; Tomoko Kodaka; Yoshitomo Suhara; Hiroaki Takayama; Keizo Waku

We examined the effect of 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand, on the intracellular free Ca2+ concentrations in HL-60 cells that express the cannabinoid CB2 receptor. We found that 2-arachidonoylglycerol induces a rapid transient increase in intracellular free Ca2+concentrations in HL-60 cells. The response was affected by neither cyclooxygenase inhibitors nor lipoxygenase inhibitors, suggesting that arachidonic acid metabolites are not involved. Consistent with this notion, free arachidonic acid was devoid of any agonistic activity. Importantly, the Ca2+ transient induced by 2-arachidonoylglycerol was blocked by pretreatment of the cells with SR144528, a CB2 receptor-specific antagonist, but not with SR141716A, a CB1 receptor-specific antagonist, indicating the involvement of the CB2 receptor but not the CB1 receptor in this cellular response. Gi or Go is also assumed to be involved, because pertussis toxin treatment of the cells abolished the response. We further examined the structure-activity relationship. We found that 2-arachidonoylglycerol is the most potent compound among a number of naturally occurring cannabimimetic molecules. Interestingly, anandamide and N-palmitoylethanolamine, other putative endogenous ligands, were found to be a weak partial agonist and an inactive ligand, respectively. These results strongly suggest that the CB2 receptor is originally a 2-arachidonoylglycerol receptor, and 2-arachidonoylglycerol is the intrinsic natural ligand for the CB2 receptor that is abundant in the immune system.


Nature | 2010

Identification of UBIAD1 as a novel human menaquinone-4 biosynthetic enzyme

Kimie Nakagawa; Yoshihisa Hirota; Natsumi Sawada; Naohito Yuge; Masato Watanabe; Yuri Uchino; Naoko Okuda; Yuka Shimomura; Yoshitomo Suhara; Toshio Okano

Vitamin K occurs in the natural world in several forms, including a plant form, phylloquinone (PK), and a bacterial form, menaquinones (MKs). In many species, including humans, PK is a minor constituent of hepatic vitamin K content, with most hepatic vitamin K content comprising long-chain MKs. Menaquinone-4 (MK-4) is ubiquitously present in extrahepatic tissues, with particularly high concentrations in the brain, kidney and pancreas of humans and rats. It has consistently been shown that PK is endogenously converted to MK-4 (refs 4–8). This occurs either directly within certain tissues or by interconversion to menadione (K3), followed by prenylation to MK-4 (refs 9–12). No previous study has sought to identify the human enzyme responsible for MK-4 biosynthesis. Previously we provided evidence for the conversion of PK and K3 into MK-4 in mouse cerebra. However, the molecular mechanisms for these conversion reactions are unclear. Here we identify a human MK-4 biosynthetic enzyme. We screened the human genome database for prenylation enzymes and found UbiA prenyltransferase containing 1 (UBIAD1), a human homologue of Escherichia coli prenyltransferase menA. We found that short interfering RNA against the UBIAD1 gene inhibited the conversion of deuterium-labelled vitamin K derivatives into deuterium-labelled-MK-4 (MK-4-d7) in human cells. We confirmed that the UBIAD1 gene encodes an MK-4 biosynthetic enzyme through its expression and conversion of deuterium-labelled vitamin K derivatives into MK-4-d7 in insect cells infected with UBIAD1 baculovirus. Converted MK-4-d7 was chemically identified by 2H-NMR analysis. MK-4 biosynthesis by UBIAD1 was not affected by the vitamin K antagonist warfarin. UBIAD1 was localized in endoplasmic reticulum and ubiquitously expressed in several tissues of mice. Our results show that UBIAD1 is a human MK-4 biosynthetic enzyme; this identification will permit more effective decisions to be made about vitamin K intake and bone health.


Journal of Biological Chemistry | 2008

Conversion of phylloquinone (vitamin K1) into menaquinone-4 (vitamin K2) in mice: Two possible routes for menaquinone-4 accumulation in cerebra of mice

Toshio Okano; Yuka Shimomura; Makiko Yamane; Yoshitomo Suhara; Maya Kamao; Makiko Sugiura; Kimie Nakagawa

There are two forms of naturally occurring vitamin K, phylloquinone and the menaquinones. Phylloquinone (vitamin K1) is a major type (>90%) of dietary vitamin K, but its concentrations in animal tissues are remarkably low compared with those of the menaquinones, especially menaquinone-4 (vitamin K2), the major form (>90%) of vitamin K in tissues. Despite this great difference, the origin of tissue menaquinone-4 has yet to be exclusively defined. It is postulated that phylloquinone is converted into menaquinone-4 and accumulates in extrahepatic tissues. To clarify this, phylloquinone with a deuterium-labeled 2-methyl-1,4-naphthoquinone ring was given orally to mice, and cerebra were collected for D NMR and liquid chromatography-tandem mass spectrometry analyses. We identified the labeled menaquinone-4 that was converted from the given phylloquinone, and this conversion occurred following an oral or enteral administration, but not parenteral or intracerebroventricular administration. By the oral route, the phylloquinone with the deuterium-labeled side chain in addition to the labeled 2-methyl-1,4-naphthoquinone was clearly converted into a labeled menaquinone-4 with a non-deuterium-labeled side chain, implying that phylloquinone was converted into menaquinone-4 via integral side-chain removal. The conversion also occurred in cerebral slice cultures and primary cultures. Deuterium-labeled menadione was consistently converted into the labeled menaquinone-4 with all of the administration routes and the culture conditions tested. Our results suggest that cerebral menaquinone-4 originates from phylloquinone intake and that there are two routes of accumulation, one is the release of menadione from phylloquinone in the intestine followed by the prenylation of menadione into menaquinone-4 in tissues, and another is cleavage and prenylation within the cerebrum.


Journal of Bone and Mineral Metabolism | 2008

Low plasma phylloquinone concentration is associated with high incidence of vertebral fracture in Japanese women

Naoko Tsugawa; Masataka Shiraki; Yoshitomo Suhara; Maya Kamao; Reo Ozaki; Kiyoshi Tanaka; Toshio Okano

It has been reported that vitamin K supplementation effectively prevents fractures and sustains bone mineral density in osteoporosis. However, there are only limited reported data concerning the association between vitamin K nutritional status and bone mineral density (BMD) or fractures in Japan. The objectives were to evaluate the association between plasma phylloquinone (K1) or menaquinone (MK-4 and MK-7) concentration and BMD or fracture in Japanese women prospectively. A total of 379 healthy women aged 30–88 years (mean age, 63.0 years) were consecutively enrolled. Plasma K1, MK-4, MK-7, and serum undercarboxylated osteocalcin (ucOC) concentrations, BMD, and incidence of vertebral fractures were evaluated. In stepwise multiple linear regression analyses, L2–4 BMD and a bone turnover marker, log K1, concentrations were independently correlated with vertebral fracture incidence. When subjects were divided into low and high K1 groups by plasma K1 concentration, the incidence of vertebral fracture in the low K1 group (14.4%) was significantly higher than that in the high K1 group (4.2%), and its age-adjusted RR was 3.58 (95% CI, 3.26–3.93). L2–4 BMD was not different between the two groups. These results suggest that subjects with vitamin K1 insufficiency in bone have increased susceptibility for vertebral fracture independently from BMD.


Tetrahedron Letters | 1996

Synthesis of a new carbohydrate mimetics: “carbopeptoid” containing a C-1 carboxylate and C-2 amino group

Yoshitomo Suhara; James E.K. Hildreth; Yoshitaka Ichikawa

Abstract Readily access to a new class of carbohydrate mimetics has been demonstrated from a d -glucosamine derivative by the synthesis of a tetrameric carbopeptoid in which the glycosidic bonds are replaced with amido linkages.


Bioorganic & Medicinal Chemistry | 2002

Oligomers of glycamino acid

Yoshitomo Suhara; Yoshiki Yamaguchi; Brian E. Collins; Ronald L. Schnaar; Masaki Yanagishita; James E. K. Hildreth; Ichio Shimada; Yoshitaka Ichikawa

Glycamino acids, a family of sugar amino acids, are derivatives of C-glycosides that possesses a carboxyl group at the C-1 position and an amino group replacing one of the hydroxyl groups at either the C-2, 3, 4, or 6 position. We have prepared a series of glucose-type glycamino acids as monomeric building blocks: these are derivatives of 2-NH(2)-Glc-beta-CO(2)H 1, 3-NH(2)-Glc-beta-CO(2)H 2, 4-NH(2)-Glc-beta-CO(2)H 3, and 6-NH(2)-Glc-beta-CO(2)H 4 and constructed four types of homo-oligomers, beta(1-->2)-linked I, beta(1-->3)-linked II, beta(1-->4)-linked III, and beta(1-->6)-linked IV, employing the well-established N-Boc and BOP strategy. CD and NMR spectral studies of these oligomers suggested that only the beta(1-->2)-linked homo-oligomer possessed a helical structure that seems to be predetermined by the linkage position. Homo-oligomers with beta(1-->2)-linkages I and beta(1-->6)-linkages IV were also subjected to O-sulfation, and these O-sulfated oligomers were found to be able, in a linkage-specific manner, to effectively inhibit L-selectin-mediated cell adhesion, HIV infection, and heparanase activity without the anticoagulant activity associated with naturally occurring sulfated polysaccharides such as heparin.


Bioorganic & Medicinal Chemistry Letters | 2000

Syntheses and biological evaluation of novel 2α-substituted 1α,25-dihydroxyvitamin D3 analogues

Yoshitomo Suhara; Ken Ichi Nihei; Hirokazu Tanigawa; Toshie Fujishima; Katsuhiro Konno; Kimie Nakagawa; Toshio Okano; Hiroaki Takayama

Novel 2alpha-substituted 1alpha,25-dihydroxyvitamin D3 analogues were efficiently synthesized and their biological activities were evaluated. 2alpha-Methyl-1alpha,25-dihydroxyvitamin D3 (2), whose unique biological activities were previously reported, was modified to 2alpha-alkyl (ethyl and propyl) and 2alpha-hydroxyalkyl (hydroxymethyl, hydroxyethyl, and hydroxypropyl) analogues 3-7 by elongation of the alkyl chain and/or introduction of a terminal hydroxyl group. 2alpha-Hydroxypropyl-1alpha,25-dihydroxyvitamin D3 (7) exhibited an exceptionally potent calcium-regulating effect and a unique activity profile.


Tetrahedron Letters | 1996

Synthesis of sulfated β-1,6-linked oligosaccharide mimetics: A novel potent inhibitor of HIV replication

Yoshitomo Suhara; Mie Ichikawa; James E. K. Hildreth; Yoshitaka Ichikawa

A novel sulfated β(1→6)-linked oligosaccharide mimetics has been synthesized and found to be a potent inhibitor of HIV replication, with an IC50 of 1 μM.


Journal of Biological Chemistry | 2013

Menadione (vitamin K3) is a catabolic product of oral phylloquinone (vitamin K1) in the intestine and a circulating precursor of tissue menaquinone-4 (vitamin K2) in rats.

Yoshihisa Hirota; Naoko Tsugawa; Kimie Nakagawa; Yoshitomo Suhara; Kiyoshi Tanaka; Yuri Uchino; Atsuko Takeuchi; Natsumi Sawada; Maya Kamao; Akimori Wada; Takashi Okitsu; Toshio Okano

Background: Menadione is an intermediate in phylloquinone to menaquinone-4 conversion in mammals. Results: Menadione is released from phylloquinone in the intestine and converted to menaquinone-4 in tissues after being reduced. Conclusion: Menadione is a catabolic product of phylloquinone and circulating precursor of tissue menaquinone-4. Significance: Determining how phylloquinone is metabolized in the body is crucial for understanding vitamin K biology. Mice have the ability to convert dietary phylloquinone (vitamin K1) into menaquinone-4 (vitamin K2) and store the latter in tissues. A prenyltransferase enzyme, UbiA prenyltransferase domain-containing 1 (UBIAD1), is involved in this conversion. There is evidence that UBIAD1 has a weak side chain cleavage activity for phylloquinone but a strong prenylation activity for menadione (vitamin K3), which has long been postulated as an intermediate in this conversion. Further evidence indicates that when intravenously administered in mice phylloquinone can enter into tissues but is not converted further to menaquinone-4. These findings raise the question whether phylloquinone is absorbed and delivered to tissues in its original form and converted to menaquinone-4 or whether it is converted to menadione in the intestine followed by delivery of menadione to tissues and subsequent conversion to menaquinone-4. To answer this question, we conducted cannulation experiments using stable isotope tracer technology in rats. We confirmed that the second pathway is correct on the basis of structural assignments and measurements of phylloquinone-derived menadione using high resolution MS analysis and a bioassay using recombinant UBIAD1 protein. Furthermore, high resolution MS and 1H NMR analyses of the product generated from the incubation of menadione with recombinant UBIAD1 revealed that the hydroquinone, but not the quinone form of menadione, was an intermediate of the conversion. Taken together, these results provide unequivocal evidence that menadione is a catabolic product of oral phylloquinone and a major source of tissue menaquinone-4.


Bioorganic & Medicinal Chemistry Letters | 2009

Elucidation of the mechanism producing menaquinone-4 in osteoblastic cells.

Yoshitomo Suhara; Akimori Wada; Toshio Okano

Vitamin K is an essential nutrient and a cofactor for the carboxylation of specific glutamyl residues of proteins to gamma-glutamyl residues, which activates osteocalcin related to bone formation. Among vitamin K homologues, menaquinone-4 (MK-4) is the most active biologically, up-regulating the gene expression of bone markers, and thus has been clinically used in the treatment of osteoporosis in Japan. Recently, we confirmed that MK-4 was converted from dietary phylloquinone (PK), and then accumulated in various tissues at high concentrations. This system should play an important role in biological functions including bone formation, however, the pathway by which MK-4 is converted remains unclear. In this study, we studied the mechanism of MK-4s conversion with chemical techniques using deuterated analogues.

Collaboration


Dive into the Yoshitomo Suhara's collaboration.

Top Co-Authors

Avatar

Toshio Okano

Kobe Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Kimie Nakagawa

Kobe Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maya Kamao

Kobe Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Naoko Tsugawa

Osaka Shoin Women's University

View shared research outputs
Top Co-Authors

Avatar

Yoshihisa Hirota

Kobe Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Akimori Wada

Kobe Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Yoshitaka Ichikawa

Johns Hopkins University School of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge