Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoshiyuki Minegishi is active.

Publication


Featured researches published by Yoshiyuki Minegishi.


Nature | 2007

Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome

Yoshiyuki Minegishi; Masako Saito; Shigeru Tsuchiya; Ikuya Tsuge; Hidetoshi Takada; Toshiro Hara; Nobuaki Kawamura; Tadashi Ariga; Srdjan Pasic; Oliver Stojkovic; Ayse Metin; Hajime Karasuyama

Hyper-immunoglobulin E syndrome (HIES) is a compound primary immunodeficiency characterized by a highly elevated serum IgE, recurrent staphylococcal skin abscesses and cyst-forming pneumonia, with disproportionately milder inflammatory responses, referred to as cold abscesses, and skeletal abnormalities. Although some cases of familial HIES with autosomal dominant or recessive inheritance have been reported, most cases of HIES are sporadic, and their pathogenesis has remained mysterious for a long time. Here we show that dominant-negative mutations in the human signal transducer and activator of transcription 3 (STAT3) gene result in the classical multisystem HIES. We found that eight out of fifteen unrelated non-familial HIES patients had heterozygous STAT3 mutations, but their parents and siblings did not have the mutant STAT3 alleles, suggesting that these were de novo mutations. Five different mutations were found, all of which were located in the STAT3 DNA-binding domain. The patients’ peripheral blood cells showed defective responses to cytokines, including interleukin (IL)-6 and IL-10, and the DNA-binding ability of STAT3 in these cells was greatly diminished. All five mutants were non-functional by themselves and showed dominant-negative effects when co-expressed with wild-type STAT3. These results highlight the multiple roles played by STAT3 in humans, and underline the critical involvement of multiple cytokine pathways in the pathogenesis of HIES.


The New England Journal of Medicine | 1996

Mutations in the Mu Heavy-Chain Gene in Patients with Agammaglobulinemia

Leman Yel; Yoshiyuki Minegishi; Elaine Coustan-Smith; Rebecca H. Buckley; Hubert Trübel; Lauren M. Pachman; Geoffrey R. Kitchingman; Dario Campana; Jurg Rohrer; Mary Ellen Conley

BACKGROUND Most patients with congenital hypogammaglobulinemia and absent B cells are males with X-linked agammaglobulinemia, which is caused by mutations in the gene for Brutons tyrosine kinase (Btk); however, there are females with a similar disorder who do not have mutations in this gene. We studied two families with autosomal recessive defects in B-cell development and patients with presumed X-linked agammaglobulinemia who did not have mutations in Btk. METHODS A series of candidate genes that encode proteins involved in B-cell signal-transduction pathways were analyzed by linkage studies and mutation screening. RESULTS Four different mutations were identified in the mu heavy-chain gene on chromosome 14. In one family, there was a homozygous 75-to-100-kb deletion that included D-region genes, J-region genes, and the mu constant-region gene. In a second family, there was a homozygous base-pair substitution in the alternative splice site of the mu heavy-chain gene. This mutation would inhibit production of the membrane form of the mu chain and produce an amino acid substitution in the secreted form. In addition, a patient previously thought to have X-linked agammaglobulinemia was found to have an amino acid substitution on one chromosome at an invariant cysteine that is required for the intrachain disulfide bond and, on the other chromosome, a large deletion that included the immunoglobulin locus. CONCLUSIONS Defects in the mu heavy-chain gene are a cause of agammaglobulinemia in humans. This implies that an intact membrane-bound mu chain is essential for B-cell development.


Journal of Clinical Investigation | 2010

Selective ablation of basophils in mice reveals their nonredundant role in acquired immunity against ticks

Takeshi Wada; Kenji Ishiwata; Haruhiko Koseki; Tomoyuki Ishikura; Tsukasa Ugajin; Naotsugu Ohnuma; Kazushige Obata; Ryosuke Ishikawa; Soichiro Yoshikawa; Kaori Mukai; Yohei Kawano; Yoshiyuki Minegishi; Hiroo Yokozeki; Naohiro Watanabe; Hajime Karasuyama

Ticks are ectoparasitic arthropods that can transmit a variety of microorganisms to humans and animals during blood feeding, causing serious infectious disorders, including Lyme disease. Acaricides are pharmacologic agents that kill ticks. The emergence of acaricide-resistant ticks calls for alternative control strategies for ticks and tick-borne diseases. Many animals develop resistance to ticks after repeated infestations, but the nature of this acquired anti-tick immunity remains poorly understood. Here we investigated the cellular and molecular mechanisms underlying acquired resistance to Haemaphysalis longicornis ticks in mice and found that antibodies were required, as was IgFc receptor expression on basophils but not on mast cells. The infiltration of basophils at tick-feeding sites occurred during the second, but not the first, tick infestation. To assess the requirement for basophil infiltration to acquired tick resistance, mice expressing the human diphtheria toxin receptor under the control of the mast cell protease 8 (Mcpt8) promoter were generated. Diphtheria toxin administration to these mice selectively ablated basophils. Diphtheria toxin-mediated basophil depletion before the second tick infestation resulted in loss of acquired tick resistance. These data provide the first clear evidence, to our knowledge, that basophils play an essential and nonredundant role in antibody-mediated acquired immunity against ticks, which may suggest new strategies for controlling tick-borne diseases.


Journal of Experimental Medicine | 2009

Molecular explanation for the contradiction between systemic Th17 defect and localized bacterial infection in hyper-IgE syndrome

Yoshiyuki Minegishi; Masako Saito; Masayuki Nagasawa; Hidetoshi Takada; Toshiro Hara; Shigeru Tsuchiya; Kazunaga Agematsu; Masafumi Yamada; Nobuaki Kawamura; Tadashi Ariga; Ikuya Tsuge; Hajime Karasuyama

Hyper-IgE syndrome (HIES) is a primary immunodeficiency characterized by atopic manifestations and susceptibility to infections with extracellular pathogens, typically Staphylococcus aureus, which preferentially affect the skin and lung. Previous studies reported the defective differentiation of T helper 17 (Th17) cells in HIES patients caused by hypomorphic STAT3 mutations. However, the apparent contradiction between the systemic Th17 deficiency and the skin/lung-restricted susceptibility to staphylococcal infections remains puzzling. We present a possible molecular explanation for this enigmatic contradiction. HIES T cells showed impaired production of Th17 cytokines but normal production of classical proinflammatory cytokines including interleukin 1β. Normal human keratinocytes and bronchial epithelial cells were deeply dependent on the synergistic action of Th17 cytokines and classical proinflammatory cytokines for their production of antistaphylococcal factors, including neutrophil-recruiting chemokines and antimicrobial peptides. In contrast, other cell types were efficiently stimulated with the classical proinflammatory cytokines alone to produce such factors. Accordingly, keratinocytes and bronchial epithelial cells, unlike other cell types, failed to produce antistaphylococcal factors in response to HIES T cell–derived cytokines. These results appear to explain, at least in part, why HIES patients suffer from recurrent staphylococcal infections confined to the skin and lung in contrast to more systemic infections in neutrophil-deficient patients.


Blood | 2012

Functional STAT3 deficiency compromises the generation of human T follicular helper cells

Cindy S. Ma; Danielle T. Avery; Anna Chan; Marcel Batten; Jacinta Bustamante; Stéphanie Boisson-Dupuis; Peter D. Arkwright; Alexandra Y. Kreins; Diana Averbuch; Dan Engelhard; Klaus Magdorf; Sara Sebnem Kilic; Yoshiyuki Minegishi; Shigeaki Nonoyama; Martyn A. French; Sharon Choo; Joanne Smart; Jane Peake; Melanie Wong; Paul Gray; Matthew C. Cook; David A. Fulcher; Jean-Laurent Casanova; Elissa K. Deenick; Stuart G. Tangye

T follicular helper (Tfh) cells are critical for providing the necessary signals to induce differentiation of B cells into memory and Ab-secreting cells. Accordingly, it is important to identify the molecular requirements for Tfh cell development and function. We previously found that IL-12 mediates the differentiation of human CD4(+) T cells to the Tfh lineage, because IL-12 induces naive human CD4(+) T cells to acquire expression of IL-21, BCL6, ICOS, and CXCR5, which typify Tfh cells. We have now examined CD4(+) T cells from patients deficient in IL-12Rβ1, TYK2, STAT1, and STAT3 to further explore the pathways involved in human Tfh cell differentiation. Although STAT1 was dispensable, mutations in IL12RB1, TYK2, or STAT3 compromised IL-12-induced expression of IL-21 by human CD4(+) T cells. Defective expression of IL-21 by STAT3-deficient CD4(+) T cells resulted in diminished B-cell helper activity in vitro. Importantly, mutations in STAT3, but not IL12RB1 or TYK2, also reduced Tfh cell generation in vivo, evidenced by decreased circulating CD4(+)CXCR5(+) T cells. These results highlight the nonredundant role of STAT3 in human Tfh cell differentiation and suggest that defective Tfh cell development and/or function contributes to the humoral defects observed in STAT3-deficient patients.


Journal of Clinical Investigation | 1999

Mutations in Igα (CD79a) result in a complete block in B-cell development

Yoshiyuki Minegishi; Elaine Coustan-Smith; Lisa Rapalus; Dario Campana; Mary Ellen Conley

Mutations in Btk, mu heavy chain, or the surrogate light chain account for 85-90% of patients with early onset hypogammaglobulinemia and absent B cells. The nature of the defect in the remaining patients is unknown. We screened 25 such patients for mutations in genes encoding components of the pre-B-cell receptor (pre-BCR) complex. A 2-year-old girl was found to have a homozygous splice defect in Igalpha, a transmembrane protein that forms part of the Igalpha/Igbeta signal-transduction module of the pre-BCR. Studies in mice suggest that the Igbeta component of the pre-BCR influences V-DJ rearrangement before cell-surface expression of mu heavy chain. To determine whether Igalpha plays a similar role, we compared B-cell development in an Igalpha-deficient patient with that seen in a mu heavy chain-deficient patient. By immunofluorescence, both patients had a complete block in B-cell development at the pro-B to pre-B transition; both patients also had an equivalent number and diversity of rearranged V-DJ sequences. These results indicate that mutations in Igalpha can be a cause of agammaglobulinemia. Furthermore, they suggest that Igalpha does not play a critical role in B-cell development until it is expressed, along with mu heavy chain, as part of the pre-BCR.


Immunity | 2013

Inflammatory Monocytes Recruited to Allergic Skin Acquire an Anti-inflammatory M2 Phenotype via Basophil-Derived Interleukin-4

Mayumi Egawa; Kaori Mukai; Soichiro Yoshikawa; Misako Iki; Naofumi Mukaida; Yohei Kawano; Yoshiyuki Minegishi; Hajime Karasuyama

Monocytes and macrophages are important effectors and regulators of inflammation, and both can be divided into distinct subsets based on their phenotypes. The developmental and functional relationship between individual subsets of monocytes and those of macrophages has not been fully elucidated, although Ly6C(+)CCR2(+) inflammatory and Ly6C(-)CCR2(-) resident monocytes are generally thought to differentiate into M1 (classically activated) and M2 (alternatively activated) macrophages, respectively. Here we show that inflammatory monocytes recruited to allergic skin acquired an M2-like phenotype in response to basophil-derived interleukin-4 (IL-4) and exerted an anti-inflammatory function. CCR2-deficient mice unexpectedly displayed an exacerbation rather than alleviation of allergic inflammation, in spite of impaired recruitment of inflammatory monocytes to skin lesions. Adoptive transfer of inflammatory monocytes from wild-type but not IL-4 receptor-deficient mice dampened the exacerbated inflammation in CCR2-deficient mice. Thus, inflammatory monocytes can be converted from being proinflammatory to anti-inflammatory under the influence of basophils in allergic reactions.


American Journal of Human Genetics | 1998

Mutations in Btk in Patients with Presumed X-Linked Agammaglobulinemia

Mary Ellen Conley; Derrick Mathias; Jason Treadaway; Yoshiyuki Minegishi; Jurg Rohrer

In 1993, two groups showed that X-linked agammaglobulinemia (XLA) was due to mutations in a tyrosine kinase now called Btk. Most laboratories have been able to detect mutations in Btk in 80%-90% of males with presumed XLA. The remaining patients may have mutations in Btk that are difficult to identify, or they may have defects that are phenotypically similar to XLA but genotypically different. We analyzed 101 families in which affected males were diagnosed as having XLA. Mutations in Btk were identified in 38 of 40 families with more than one affected family member and in 56 of 61 families with sporadic disease. Excluding the patients in whom the marked decrease in B cell numbers characteristic of XLA could not be confirmed by immunofluorescence studies, mutations in Btk were identified in 43 of 46 patients with presumed sporadic XLA. Two of the three remaining patients had defects in other genes required for normal B cell development, and the third patient was unlikely to have XLA, on the basis of results of extensive Btk analysis. Our techniques were unable to identify a mutation in Btk in one male with both a family history and laboratory findings suggestive of XLA. DNA samples from 41 of 49 of the mothers of males with sporadic disease and proven mutations in Btk were positive for the mutation found in their son. In the other 8 families, the mutation appeared to arise in the maternal germ line. In 20 families, haplotype analysis showed that the new mutation originated in the maternal grandfather or great-grandfather. These studies indicate that 90%-95% of males with presumed XLA have mutations in Btk. The other patients are likely to have defects in other genes.


Immunological Reviews | 2000

Defects in early B-cell development : comparing the consequences of abnormalities in pre-BCR signaling in the human and the mouse

Mary Ellen Conley; Jurg Rohrer; Lisa Rapalus; Yoshiyuki Minegishi

Patients with genetic defects in B-cell development provide an unusual opportunity to dissect the requirements for normal B-cell maturation. It is striking that all of the known genetic defects that result in a failure of B-cell development involve signaling through the pre-B-cell receptor (pre-BCR). Approximately 85% of affected patients are males with mutations in the X chromosome-encoded cytoplasmic tyrosine kinase Btk. Preliminary experiments using stem cell transplants and retroviral-mediated gene therapy in Btk-deficient mice suggest that it may be relatively easy to correct serum immunoglobulins but harder to correct antibody production to T-cell-independent antigens in this disorder. About 3-6% of patients with defects in B-cell development have deletions or critical base pair substitutions in the mu constant region gene. Patients with defects in Igalpha, lambda5 and B-cell linker protein (BLNK) have also been described. All of these patients have a block at the pro-B to pre-B-cell transition. Defects in Btk, lambda5 and BLNK result in a more severe phenotype in the human compared to the mouse. These findings suggest that requirements for signaling through the pre-BCR are more stringent in the human compared to the mouse. Possible explanations for this observation are discussed.


Current Opinion in Immunology | 2009

Hyper-IgE syndrome.

Yoshiyuki Minegishi

Hyper-IgE syndrome (HIES) is a complex primary immunodeficiency characterized by atopic dermatitis associated with extremely high serum IgE levels and susceptibility to infections with extracellular bacteria. Nonimmunological abnormalities, including a distinctive facial appearance, fracture following minor trauma, scoliosis, hyperextensive joints, and the retention of deciduous teeth are also observed in most patients. Recent studies have demonstrated that dominant-negative mutations in the signal transducer and activator of transcription 3 (STAT3) gene result in the classical multisystem form of HIES, whereas a null mutation in the tyrosine kinase 2 (TYK2) gene causes an autosomal recessive HIES associated with viral and mycobacterial infections. In both patients, signal transduction for multiple cytokines, including IL-6 and IL-23, was defective, resulting in impaired T(H)17 function. These findings suggest that the defect in cytokine signaling constitutes the molecular basis for the immunological and nonimmunological abnormalities observed in HIES.

Collaboration


Dive into the Yoshiyuki Minegishi's collaboration.

Top Co-Authors

Avatar

Hajime Karasuyama

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Yohei Kawano

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kazushige Obata

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Jurg Rohrer

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Masako Saito

University of Tokushima

View shared research outputs
Top Co-Authors

Avatar

Soichiro Yoshikawa

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Yusuke Tsujimura

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Junichi Yata

Tokyo Medical and Dental University

View shared research outputs
Researchain Logo
Decentralizing Knowledge