Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoshiyuki Yoshinaka is active.

Publication


Featured researches published by Yoshiyuki Yoshinaka.


Biochemical and Biophysical Research Communications | 2004

HIV protease inhibitor nelfinavir inhibits replication of SARS-associated coronavirus

Norio Yamamoto; Rongge Yang; Yoshiyuki Yoshinaka; Shinji Amari; Tatsuya Nakano; Jindrich Cinatl; Holger F. Rabenau; Hans Wilhelm Doerr; Gerhard Hunsmann; Akira Otaka; Hirokazu Tamamura; Nobutaka Fujii; Naoki Yamamoto

Abstract A novel coronavirus has been identified as an etiological agent of severe acute respiratory syndrome (SARS). To rapidly identify anti-SARS drugs available for clinical use, we screened a set of compounds that included antiviral drugs already in wide use. Here we report that the HIV-1 protease inhibitor, nelfinavir, strongly inhibited replication of the SARS coronavirus (SARS-CoV). Nelfinavir inhibited the cytopathic effect induced by SARS-CoV infection. Expression of viral antigens was much lower in infected cells treated with nelfinavir than in untreated infected cells. Quantitative RT-PCR analysis showed that nelfinavir could decrease the production of virions from Vero cells. Experiments with various timings of drug addition revealed that nelfinavir exerted its effect not at the entry step, but at the post-entry step of SARS-CoV infection. Our results suggest that nelfinavir should be examined clinically for the treatment of SARS and has potential as a good lead compound for designing anti-SARS drugs.


PLOS Neglected Tropical Diseases | 2013

Sulfated polysaccharide, curdlan sulfate, efficiently prevents entry/fusion and restricts antibody-dependent enhancement of dengue virus infection in vitro: a possible candidate for clinical application.

Koji Ichiyama; Sindhoora Bhargavi Gopala Reddy; LiFeng Zhang; Wei Xin Chin; Tegshi Muschin; Lars Heinig; Youichi Suzuki; Haraprasad Nanjundappa; Yoshiyuki Yoshinaka; Akihide Ryo; Nobuo Nomura; Eng Eong Ooi; Subhash G. Vasudevan; Takashi Yoshida; Naoki Yamamoto

Curdlan sulfate (CRDS), a sulfated 1→3-β-D glucan, previously shown to be a potent HIV entry inhibitor, is characterized in this study as a potent inhibitor of the Dengue virus (DENV). CRDS was identified by in silico blind docking studies to exhibit binding potential to the envelope (E) protein of the DENV. CRDS was shown to inhibit the DENV replication very efficiently in different cells in vitro. Minimal effective concentration of CRDS was as low as 0.1 µg/mL in LLC-MK2 cells, and toxicity was observed only at concentrations over 10 mg/mL. CRDS can also inhibit DENV-1, 3, and 4 efficiently. CRDS did not inhibit the replication of DENV subgenomic replicon. Time of addition experiments demonstrated that the compound not only inhibited viral infection at the host cell binding step, but also at an early post-attachment step of entry (membrane fusion). The direct binding of CRDS to DENV was suggested by an evident reduction in the viral titers after interaction of the virus with CRDS following an ultrafiltration device separation, as well as after virus adsorption to an alkyl CRDS-coated membrane filter. The electron microscopic features also showed that CRDS interacted directly with the viral envelope, and caused changes to the viral surface. CRDS also potently inhibited DENV infection in DC-SIGN expressing cells as well as the antibody-dependent enhancement of DENV-2 infection. Based on these data, a probable binding model of CRDS to DENV E protein was constructed by a flexible receptor and ligand docking study. The binding site of CRDS was predicted to be at the interface between domains II and III of E protein dimer, which is unique to this compound, and is apparently different from the β-OG binding site. Since CRDS has already been tested in humans without serious side effects, its clinical application can be considered.


Vaccine | 2005

The development of vaccines against SARS corona virus in mice and SCID-PBL/hu mice

Masaji Okada; Yuji Takemoto; Yoshinobu Okuno; Satomi Hashimoto; Shigeto Yoshida; Yukari Fukunaga; Takao Tanaka; Yoko Kita; Sachiko Kuwayama; Yumiko Muraki; Noriko Kanamaru; Hiroko Takai; Chika Okada; Yayoi Sakaguchi; Izumi Furukawa; Kyoko Yamada; Makoto Matsumoto; Tetsuo Kase; Daphne E. deMello; J. S. M. Peiris; Pei-Jer Chen; Naoki Yamamoto; Yoshiyuki Yoshinaka; Tatsuji Nomura; Isao Ishida; Shigeru Morikawa; Masato Tashiro; Mitsunori Sakatani

Abstract We have investigated to develop novel vaccines against SARS CoV using cDNA constructs encoding the structural antigen; spike protein (S), membrane protein (M), envelope protein (E), or nucleocapsid (N) protein, derived from SARS CoV. Mice vaccinated with SARS-N or -M DNA using pcDNA 3.1(+) plasmid vector showed T cell immune responses (CTL induction and proliferation) against N or M protein, respectively. CTL responses were also detected to SARS DNA-transfected type II alveolar epithelial cells (T7 cell clone), which are thought to be initial target cells for SARS virus infection in human. To determine whether these DNA vaccines could induce T cell immune responses in humans as well as in mice, SCID-PBL/hu mice was immunized with these DNA vaccines. As expected, virus-specific CTL responses and T cell proliferation were induced from human T cells. SARS-N and SARS-M DNA vaccines and SCID-PBL/hu mouse model will be important in the development of protective vaccines.


Journal of Virology | 2012

Monitoring of S Protein Maturation in the Endoplasmic Reticulum by Calnexin Is Important for the Infectivity of Severe Acute Respiratory Syndrome Coronavirus

Masaya Fukushi; Yoshiyuki Yoshinaka; Yusuke Matsuoka; Seisuke Hatakeyama; Yukihito Ishizaka; Teruo Kirikae; Takehiko Sasazuki; Tohru Miyoshi-Akiyama

ABSTRACT Severe acute respiratory syndrome coronavirus (SARS-CoV) is the etiological agent of SARS, a fatal pulmonary disorder with no effective treatment. We found that SARS-CoV spike glycoprotein (S protein), a key molecule for viral entry, binds to calnexin, a molecular chaperone in the endoplasmic reticulum (ER), but not to calreticulin, a homolog of calnexin. Calnexin bound to most truncated mutants of S protein, and S protein bound to all mutants of calnexin. Pseudotyped virus carrying S protein (S-pseudovirus) produced by human cells that were treated with small interfering RNA (siRNA) for calnexin expression (calnexin siRNA-treated cells) showed significantly lower infectivity than S-pseudoviruses produced by untreated and control siRNA-treated cells. S-pseudovirus produced by calnexin siRNA-treated cells contained S protein modified with N-glycan side chains differently from other two S proteins and consisted of two kinds of viral particles: those of normal density with little S protein and those of high density with abundant S protein. Treatment with peptide-N-glycosidase F (PNGase F), which removes all types of N-glycan side chains from glycoproteins, eliminated the infectivity of S-pseudovirus. S-pseudovirus and SARS-CoV produced in the presence of α-glucosidase inhibitors, which disrupt the interaction between calnexin and its substrates, showed significantly lower infectivity than each virus produced in the absence of those compounds. In S-pseudovirus, the incorporation of S protein into viral particles was obviously inhibited. In SARS-CoV, viral production was obviously inhibited. These findings demonstrated that calnexin strictly monitors the maturation of S protein by its direct binding, resulting in conferring infectivity on SARS-CoV.


The Journal of Infectious Diseases | 2011

Fully Human Monoclonal Antibody Directed to Proteolytic Cleavage Site in Severe Acute Respiratory Syndrome (SARS) Coronavirus S Protein Neutralizes the Virus in a Rhesus Macaque SARS Model

Tohru Miyoshi-Akiyama; Isao Ishida; Masaya Fukushi; Keina Yamaguchi; Yusuke Matsuoka; Takashi Ishihara; Masayoshi Tsukahara; Seisuke Hatakeyama; Norikazu Itoh; Aki Morisawa; Yoshiyuki Yoshinaka; Naoki Yamamoto; Zhang Lian-feng; Qin Chuan; Teruo Kirikae; Takehiko Sasazuki

Abstract Background. There is still no effective method to prevent or treat severe acute respiratory syndrome (SARS), which is caused by SARS coronavirus (CoV). In the present study, we evaluated the efficacy of a fully human monoclonal antibody capable of neutralizing SARS-CoV in vitro in a Rhesus macaque model of SARS. Methods. The antibody 5H10 was obtained by vaccination of KM mice bearing human immunoglobulin genes with Escherichiacoli–producing recombinant peptide containing the dominant epitope of the viral spike protein found in convalescent serum samples from patients with SARS. Results. 5H10, which recognized the same epitope that is also a cleavage site critical for the entry of SARS-CoV into host cells, inhibited propagation of the virus and pathological changes found in Rhesus macaques infected with the virus through the nasal route. In addition, we analyzed the mode of action of 5H10, and the results suggested that 5H10 inhibited fusion between the virus envelope and host cell membrane. 5H10 has potential for use in prevention and treatment of SARS if it reemerges. Conclusions. This study represents a platform to produce fully human antibodies against emerging infectious diseases in a timely and safe manner.


Antiviral Research | 2005

Highly potent anti-HIV-1 activity isolated from fermented Polygonum tinctorium Aiton

Yu Zhong; Yoshiyuki Yoshinaka; Tadahiro Takeda; Noriko Shimizu; Sayaka Yoshizaki; Yoshio Inagaki; Shinobu Matsuda; Gisho Honda; Nobutaka Fujii; Naoki Yamamoto

Abstract A water-soluble extract of fermented Polygonum tinctorium Aiton (Polygonaceae) called Sukumo, exhibited a potent inhibitory activity against HIV type 1 in vitro. The extract potently suppressed acute HIV-1 (IIIB) infection in MT-4 cells with EC50 values of 0.5μg/ml but exhibited low cytotoxicity to MT-4 cells even at a high concentration (CC50 >1000μg/ml). It also inhibited giant cell formation in co-cultures of HIV-infected cells and uninfected Molt-4 cells. Sukumo extract was found to interact with both the viral envelope glycoprotein and cellular receptors, thus blocking virus-cell binding and virus-induced syncytium formation. There was a good correlation between the extracts anti-HIV-1 activity and its inhibitory effects on HIV-1 binding. It also suppressed replication of herpes simplex virus type 1 in Vero cells with an EC50 of 11.56μg/ml. On the other hand, there was no appreciable activity against influenza A virus, poliovirus or SARS corona virus when tested at concentrations ranging from 3.2–400μg/ml as shown by microscopic image analysis for cytopathic effect (CPE). Physico-chemical studies revealed that the anti-HIV activity in the extract was essentially maintained after boiling at 100°C in 1N HCl or 1N NaOH, and after treatment with 100mM NaIO4. The inhibitory activity of the extract was also not reduced after pronase digestion. The active factor in the extract is likely to be a novel compound(s) having a polyanionic substructure and a molecular weight of 10,000–50,000.


Biochemical and Biophysical Research Communications | 2015

Procyanidin trimer C1 derived from Theobroma cacao reactivates latent human immunodeficiency virus type 1 provirus

Takanori Hori; Jacob Samson Barnor; Tung Nguyen Huu; Osamu Morinaga; Akiko Hamano; Jerry Ndzinu; Angela Frimpong; Keren Minta-Asare; Mildred Amoa-Bosompem; James Brandful; John Kofi Odoom; Joseph Humphrey Kofi Bonney; Isaac Tuffour; Baffour-Awuah Owusu; Mark Ofosuhene; Philip Atchoglo; Maxwell Sakyiamah; Richard Adegle; Regina Appiah-Opong; William Ampofo; Kwadwo Koram; Alexander K. Nyarko; Laud Kenneth Okine; Dominic Edoh; Alfred Ampomah Appiah; Takuhiro Uto; Yoshiyuki Yoshinaka; Shin Uota; Yukihiro Shoyama; Shoji Yamaoka

Despite remarkable advances in combination antiretroviral therapy (cART), human immunodeficiency virus type 1 (HIV-1) infection remains incurable due to the incomplete elimination of the replication-competent virus, which persists in latent reservoirs. Strategies for targeting HIV reservoirs for eradication that involves reactivation of latent proviruses while protecting uninfected cells by cART are urgently needed for cure of HIV infection. We screened medicinal plant extracts for compounds that could reactivate the latent HIV-1 provirus and identified a procyanidin trimer C1 derived from Theobroma cacao as a potent activator of the provirus in human T cells latently infected with HIV-1. This reactivation largely depends on the NF-κB and MAPK signaling pathways because either overexpression of a super-repressor form of IκBα or pretreatment with a MEK inhibitor U0126 diminished provirus reactivation by C1. A pan-PKC inhibitor significantly blocked the phorbol ester-induced but not the C1-induced HIV-1 reactivation. Although C1-induced viral gene expression persisted for as long as 48 h post-stimulation, NF-κB-dependent transcription peaked at 12 h post-stimulation and then quickly declined, suggesting Tat-mediated self-sustainment of HIV-1 expression. These results suggest that procyanidin C1 trimer is a potential compound for reactivation of latent HIV-1 reservoirs.


Journal of General Virology | 1984

Murine Leukaemia Virus p30 Heterogeneity as Revealed by Two-dimensional Gel Electrophoresis Is Not an Artefact of the Technique

I. Katoh; Yoshiyuki Yoshinaka; Ronald B. Luftig

We have utilized two-dimensional (2D) gel electrophoresis [the first dimension being a linear pH gradient (5 to 8) and the second and 8 to 15% acrylamide gradient] to characterize the virion protein, p30, from several strains of purified murine leukaemia virus (MuLV). In all cases, we found that there was a predominant (70 to 90%) Coomassie Brilliant Blue-staining p30 spot, as well as several other species which differed in pI. The major p30 spot differed in pI among different MuLV strains and the minor spots varied depending on the host cell used to grow the virus. Specifically, (i) Moloney (M)-MuLV/NIH-3T3 showed two spots, a major one at pI 6.3 and a more acidic one, (ii) AKR/NIH-3T3, AKR/mouse embryo, and Gross/NIH-3T3 showed four spots, with the two basic, minor spots of AKR/NIH-3T3 appearing relatively decreased in intensity, and (iii) Rauscher (R)-MuLV/JLS-V9 (BALB/c) showed two spots, a major one with greater than 90% of the estimated Coomassie Brilliant Blue stain at a pI of 6.5 and a minor, acidic one. The major spots of AKR and M-MuLV viruses also differed in pI. The major spot of the AKR and Gross N-tropic viruses had a pI of 6.7 while that of NB-tropic virus M-MuLV had a pI of 6.3. The possibility that the heterogeneity observed in p30 was an artefact of the 2D gel technique had to be considered since urea was used to denature proteins in the first dimension of the gel. This possibility was made unlikely by our finding that another technique, chromatofocusing, gave the same results. Specifically, M-MuLV/JLS-V9 p30, when separated on chromatofocusing columns under non-denaturing conditions yielded three peaks, each of which directly corresponded to the three spots (pI: 6.1, 6.3, 6.6) observed on 2D gels. Furthermore, tryptic peptide maps of the major (pI 6.3) and one of the minor (pI 6.6) M-MuLV spots, although very similar in peptide composition, showed about five clearly defined differences. These results indicate (i) that the p30s of several N- and NB-tropic viruses are heterogeneous in pI, and (ii) for one particular MuLV, the p30 heterogeneity can be explained by a difference in amino acid composition. These findings of p30 charge heterogeneity may reflect either the presence of several different p30s in each virus particle and/or a heterogeneity in the virus population.


Journal of General Virology | 1985

In vitro cleavage of Pr65gag by the Moloney murine leukaemia virus proteolytic activity yields p30 whose NH2-terminal sequence is identical to virion p30.

Yoshiyuki Yoshinaka; Rose B. Shames; Ronald B. Luftig; Gary W. Smythers; Stephen Oroszlan

In vitro cleavage of Gazdar murine sarcoma virus Pr65gag, which has all of the antigenic determinants of Moloney murine leukaemia virus Pr65gag, i.e. p15, p12, p30 and p10, by the Moloney murine leukaemia virus proteolytic activity yielded a p30 whose partial NH2-terminal sequence was identical to Moloney murine leukaemia virus. Both [3H]leucine-labelled and unlabelled Pr65gag were used to generate the cleaved p30.


Virology | 1992

In vitro accurate transcription from the cap site of bovine leukemia virus (BLV) dependent on the BLV-infected cell nuclear lysate

Akiko Shoji-Tanaka; Iyoko Katoh; Yoshiyuki Yoshinaka; Yoji Ikawa

The cell-free transcriptional system initiating from the cap site in bovine leukemia virus (BLV) LTR by RNA polymerase II was constructed. The transcription was completely dependent on the template DNA and the nuclear lysate isolated from BLV-infected bat lung cells (TB1Lu). The relative transcriptional rates estimated using several deletion mutants around the promoter sequence in BLV LTR as templates closely corresponded to that obtained by transient expression assay in cultured cells using these plasmids and tax-producing plasmid. The partial purification of the factor(s) involving to the transcriptional activation from the nuclear lysate suggested that the factor(s) was different from tax and rex, the regulatory factors encoded on viral genome. The transcription from the caps site of adenovirus E3 was also stimulated in the presence of the nuclear lysate from BLV-infected cells.

Collaboration


Dive into the Yoshiyuki Yoshinaka's collaboration.

Top Co-Authors

Avatar

Iyoko Katoh

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen Oroszlan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Terry D. Copeland

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Satoru Nakamura

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Shoji Yamaoka

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Yoshie Takahashi

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Ronald B. Luftig

University of South Carolina

View shared research outputs
Researchain Logo
Decentralizing Knowledge