Yossi Tsfadia
Tel Aviv University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yossi Tsfadia.
Biochimica et Biophysica Acta | 1992
M. Gutman; Yossi Tsfadia; A. Masad; E. Nachliel
The anion-specific channel of the phoE porine is a miniature body of water surrounded by peptide walls. The physical and chemical properties of the water in such a microscopic space were measured by monitoring the dynamics of a well-studied reaction--the protolytic dissociation of a strong acid. To attain this purpose, we allowed pyranine (8-hydroxypyrene-1,3,6-trisulfonate) to bind to the anion-specific channel. The dye is bound, with a 1:1 stoichiometry, with a delta G = -9.5 kcal/mol. Photoexcitation of the dye, to its first electronic singlet state (phi OH*), renders it very acidic and the hydroxyl proton dissociates to H+ and excited anion (phi O*-). We employed single photon-counting time-resolved fluorimetry, to monitor the reversible dissociation of pyranine as it proceeds within the channel and reconstructed the observed signal by a numerical integration of the differential diffusion equation pertinent for a proton within the channel. The most characteristic feature of the water-filled channel, is the intensified electrostatic interactions attained by the low dielectric constant of the diffusion space, epsilon eff = 24. For this reason, the electric field of a few positive charges is sufficient to ensure that an anion entering the channel will be effectively sucked in. The interaction of the water molecules with the peptide structure forming the channel affects the physical properties of the water. Their capacity to conduct proton, quantitated by the protons diffusion coefficient (4.5.10(-5) cm2/s), is reduced by 50% with respect to that of bulk water. The activity of the water in the channel is reduced to alpha H2O = 0.966. These observation are in accord with our previous studies of water in small defined cavities in proteins.
Biochemistry | 2009
Milit Marom; Roman Safonov; Shay Amram; Yoav Avneon; Esther Nachliel; Menachem Gutman; Keren Zohary; Abdussalam Azem; Yossi Tsfadia
The translocation of proteins from the cytosol into the mitochondrial matrix is mediated by the coordinated action of the TOM complex in the outer membrane, as well as the TIM23 complex and its associated protein import motor in the inner membrane. The focus of this work is the peripheral inner membrane protein Tim44. Tim44 is a vital component of the mitochondrial protein translocation motor that anchors components of the motor to the TIM23 complex. For this purpose, Tim44 associates with the import channel by direct interaction with the Tim23 protein. Additionally, it was shown in vitro that Tim44 associates with acidic model membranes, in particular those containing cardiolipin. The latter interaction was shown to be mediated by the carboxy-terminal domain of Tim44 [Weiss, C., et al. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 8890-8894]. The aim of this study was to determine the precise recognition site for negative lipids in the C-terminal domain of Tim44. In particular, we wanted to examine the recently suggested hypothesis that acidic phospholipids associate with Tim44 via a hydrophobic cavity that is observed in the high-resolution structure of the C-terminal domain of the protein [Josyula, R., et al. (2006) J. Mol. Biol. 359, 798-804]. Molecular dynamics simulations suggest that (i) the hydrophobic tail of lipids may interact with Tim44 via the latters hydrophobic cavity and (ii) a region, located in the N-terminal alpha-helix of the C-terminal domain (helices A1 and A2), may serve as a membrane attachment site. To validate this assumption, N-terminal truncations of yeast Tim44 were examined for their ability to bind cardiolipin-containing phospholipid vesicles. The results indicate that removal of the N-terminal alpha-helix (helix A1) abolishes the capacity of Tim44 to associate with cardiolipin-containing liposomes. We suggest that helices A1 and A2, in Tim44, jointly promote the association of the protein with acidic phospholipids.
FEBS Letters | 2007
Yossi Tsfadia; Ran Friedman; Jonathan Kadmon; Anna Selzer; Esther Nachliel; Menachem Gutman
The entry of substrate into the active site is the first event in any enzymatic reaction. However, due to the short time interval between the encounter and the formation of the stable complex, the detailed steps are experimentally unobserved. In the present study, we report a molecular dynamics simulation of the encounter between palmitate molecule and the Toad Liver fatty acid binding protein, ending with the formation of a stable complex resemblance in structure of other proteins of this family. The forces operating on the system leading to the formation of the tight complex are discussed.
Biophysical Journal | 1993
Eyal Shimoni; Yossi Tsfadia; Esther Nachliel; Menachem Gutman
Time resolved fluorimetry was employed to monitor the geminate recombination between proton and excited pyranine anion locked, together with less than 30 water molecules, inside the heme binding site of Apomyoglobin (sperm whale). The results were analyzed by a numerical reconstruction of the differential rate equation for time-dependent diffusion controlled reaction with radiating boundaries using N. Agmons procedure (Huppert, Pines, and Agmon, 1990, J. Opt. Soc. Am. B., 7:1541-1550). The analysis of the curve provided the effective dielectric constant of the proton permeable space in the cavity and the diffusion coefficient of the proton. The electrostatic potential within the cavity was investigated by the equations given by Gilson et al. (1985, J. Mol. Biol., 183:503-516). According to this analysis the dielectric constant of the protein surrounding the site is epsilon prot < or = 6.5. The diffusion coefficient of the proton in the heme binding site of Apomyoglobin-pyranine complex is D = 4 x 10(-5) cm2/s. This value is approximately 50% of the diffusion coefficient of proton in water. The lower value indicates enhanced ordering of water in the cavity, a finding which is corroborated by a large negative enthropy of binding delta S0 = -46.6 cal.mole-1 deg-1. The capacity of a small cavity in a protein to retain a proton had been investigated through the mathematical reconstruction of the dynamics. It has been demonstrated that Coulombic attraction, as large as delta psi of energy coupling membrane, is insufficient to delay a free proton for a time frame comparable to the turnover time of protogenic sites.
Biochimica et Biophysica Acta | 2003
Ezra Daniel; Ariel Lustig; Melvyn M. David; Yossi Tsfadia
The published molecular mass of erythrocruorin of Lumbricus terrestris and related earthworm species covers a bewildering range of 3.23-4.5 MDa. A critical reexamination reveals that some mass determinations were underestimated and the results do cluster, not at one, but at two values of the molecular mass. One cluster corresponds to approximately 3.6 MDa, as predicted for a stoichiometry of 144 globin and 36 linker chains-the Vinogradov model for the hexagonal bilayer (HBL) assembly of Lumbricus erythrocruorin-and as estimated from the crystal structure of HBL at 5.5 A resolution [Proc. Natl. Acad. Sci. U. S. A. 97 (2000) 7107]. The other cluster corresponds to approximately 4.4 MDa. In addition, a molecular mass of 4.1 MDa, determined by multiangle laser light scattering (MALLS), stands apart of the two clusters, separated from the masses obtained by other methods of molecular mass determination. We propose a stoichiometry of 192 globin and 36 linker chains for the 4.4-MDa molecule. The 36 linkers and 144 out of 192 globin chains are identified with the HBL and the remaining 48 globins are allotted equally to the two halves of the axial cavity above and below the central torus of the structure. The proposed model is supported by the occurrence in some annelid species of erythrocruorin with centrally placed subunits [Biochim. Biophys. Acta 359 (1974) 210], and by the oxidation-dependent shedding of subunits in Lumbricus erythrocruorin. We propose further that the 4.1 MDa determination represents the weight average molecular mass of a population of molecules resulting from a partial dissociation of 4.4-MDa erythrocruorin. This interpretation seems reasonable on the background of the very low protein concentrations ( approximately 100 microg/ml and lower) prevailing at the MALLS experiment.
Biochimica et Biophysica Acta | 1999
Yossi Tsfadia; Ezra Daniel
Previous calculations from meniscus depletion sedimentation equilibrium earthworm hemoglobin from Lumbricus terrestris (E.J. Wood et al., Biochem. J. 153 (1976) 589-96) and from the related species Lumbricus sp. (L. sp.) (M.M. David and E. D Mol. Biol. 87 (1974) 89--101) were made on the assumption that the solutions behaved ideally. Re-examination of their results reveals, however, a dependence of the apparent molecular mass on concentration. Taking this effect into consideration, we have nowrecalculated from their data molecular masses of 4.4--4.5 MDa for the hemoglobin of both L. terrestris and L. sp. On the basis of the new determinations, we propose for the polypeptide chain composition of L. terrestris hemoglobin a model [(abcd )4L1L2L3]12 where a,b,c,d are the four globin and L1,L2,L3 are the three major linker chain constituents of the protein. The model is consistent with the D6 symmetry of the molecule. A 10 S intermediate product in the alkaline dissociation Lumbricus hemoglobin is viewed as a binary mixture of products resulting from a disproportionation reaction involving the structural unit. The present interpretation is shown to be consistent with observed relations between molecular masses and SDS gel electrophoretic band patterns of 10 S species and intact hemoglobin.
Journal of Molecular Graphics & Modelling | 2013
Assaf Ganoth; Yossi Tsfadia; Reuven Wiener
The synthesis and destruction of proteins are imperative for maintaining their cellular homeostasis. In the 1970s, Aaron Ciechanover, Avram Hershko, and Irwin Rose discovered that certain proteins are tagged by ubiquitin before degradation, a discovery that awarded them the 2004 Nobel Prize in Chemistry. Compelling data gathered during the last several decades show that ubiquitin plays a vital role not only in protein degradation but also in many cellular functions including DNA repair processes, cell cycle regulation, cell growth, immune system functionality, hormone-mediated signaling in plants, vesicular trafficking pathways, regulation of histone modification and viral budding. Due to the involvement of ubiquitin in such a large number of diverse cellular processes, flaws and impairments in the ubiquitin system were found to be linked to cancer, neurodegenerative diseases, genetic disorders, and immunological disorders. Hence, deciphering the dynamics and complexity of the ubiquitin system is of significant importance. In addition to experimental techniques, computational methodologies have been gaining increasing influence in protein research and are used to uncover the structure, stability, folding, mechanism of action and interactions of proteins. Notably, molecular modeling and molecular dynamics simulations have become powerful tools that bridge the gap between structure and function while providing dynamic insights and illustrating essential mechanistic characteristics. In this study, we present an overview of molecular modeling and simulations of ubiquitin and the ubiquitin system, evaluate the status of the field, and offer our perspective on future progress in this area of research.
Biochimica et Biophysica Acta | 2016
Ortal Amber-Vitos; Navaneet Chaturvedi; Esther Nachliel; Menachem Gutman; Yossi Tsfadia
The PPAR-RXR complex is one of the most significant and prevalent regulatory systems, controlling lipid metabolism by gene expression. Both proteins are members of the nuclear hormone receptor family, consisting of a ligand-binding domain (LBD), a hinge and a DNA binding domain (DBD). The two proteins form a heterodimer in the nucleus. The ligand-free complex interacts with corepressor proteins and blocks the expression of the genes. With the activating ligands and coactivator segments of regulating proteins, the heterodimer becomes active and allows translation of the genes under its control. We implemented model-independent all-atom molecular dynamics simulations for clarifying the structure changes that the activating ligand and the regulatory peptides impose on the PPAR-RXR system, starting with an LBD up to the PPAR-RXR-DNA complex. The simulations were carried out first with an active state of the protein. Once the relaxed state was attained, it was transformed into the inactive-state, the resulting structure was simulated. As the complex alternates between the active-inactive conformations, most of the changes are noticed at the junction area between the two subunits, located on the surface of a long fused helical structure made of H10-H11 of the proteins. The significant differences between the states included enhanced rigidity of the inactive complex, enhancement of tight contacts. The main drive for the transformation is the relocation of the tip of H12 of the PPAR that drives the carboxylate of the C-terminal towards the junction between H10-H11 of the RXR, leading to rearrangement of the main contact zone of the proteins.
PLOS ONE | 2013
Lihie Ben-Avraham Levin; Ehud Zelzion; Esther Nachliel; Menachem Gutman; Yossi Tsfadia; Yulia Einav
The integrins are a family of membrane receptors that attach a cell to its surrounding and play a crucial function in cell signaling. The combination of internal and external stimuli alters a folded non-active state of these proteins to an extended active configuration. The β3 subunit of the platelet αIIbβ3 integrin is made of well-structured domains rich in disulfide bonds. During the activation process some of the disulfides are re-shuffled by a mechanism requiring partial reduction of some of these bonds; any disruption in this mechanism can lead to inherent blood clotting diseases. In the present study we employed Molecular Dynamics simulations for tracing the sequence of structural fluctuations initiated by a single cysteine mutation in the β3 subunit of the receptor. These simulations showed that in-silico protein mutants exhibit major conformational deformations leading to possible disulfide exchange reactions. We suggest that any mutation that prevents Cys560 from reacting with one of the Cys567–Cys581 bonded pair, thus disrupting its ability to participate in a disulfide exchange reaction, will damage the activation mechanism of the integrin. This suggestion is in full agreement with previously published experiments. Furthermore, we suggest that rearrangement of disulfide bonds could be a part of a natural cascade of thiol/disulfide exchange reactions in the αIIbβ3 integrin, which are essential for the native activation process.
International Journal of Biological Macromolecules | 1988
Ingrid Pilz; Erika Schwarz; Yossi Tsfadia; Ezra Daniel
Abstract The erythrocruorin from the aquatic snail Helisoma trivolvis was studied in sodium phosphate buffer at pH 6.7 by small angle X-ray scattering. The following molecular parameters were determined: radius of gyration 9.4 ± 0.1 nm and maximum dimension 29 ± 1 nm. A model which fits the experimental data well is presented. The overall shape is best described by a slightly ellipsoidal shape with a hole in the centre. A model consisting of 12 subunits forming a slightly ellipsoidal shape fits very well all scattering data.