Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yosuke Akamatsu is active.

Publication


Featured researches published by Yosuke Akamatsu.


Progress in Neurobiology | 2014

Vascular remodeling after ischemic stroke: mechanisms and therapeutic potentials

Jialing Liu; Yongting Wang; Yosuke Akamatsu; Chih Cheng Lee; R. Anne Stetler; Michael T. Lawton; Guo-Yuan Yang

The brain vasculature has been increasingly recognized as a key player that directs brain development, regulates homeostasis, and contributes to pathological processes. Following ischemic stroke, the reduction of blood flow elicits a cascade of changes and leads to vascular remodeling. However, the temporal profile of vascular changes after stroke is not well understood. Growing evidence suggests that the early phase of cerebral blood volume (CBV) increase is likely due to the improvement in collateral flow, also known as arteriogenesis, whereas the late phase of CBV increase is attributed to the surge of angiogenesis. Arteriogenesis is triggered by shear fluid stress followed by activation of endothelium and inflammatory processes, while angiogenesis induces a number of pro-angiogenic factors and circulating endothelial progenitor cells (EPCs). The status of collaterals in acute stroke has been shown to have several prognostic implications, while the causal relationship between angiogenesis and improved functional recovery has yet to be established in patients. A number of interventions aimed at enhancing cerebral blood flow including increasing collateral recruitment are under clinical investigation. Transplantation of EPCs to improve angiogenesis is also underway. Knowledge in the underlying physiological mechanisms for improved arteriogenesis and angiogenesis shall lead to more effective therapies for ischemic stroke.


Journal of The American Society of Nephrology | 2014

Conformational Change in Transfer RNA Is an Early Indicator of Acute Cellular Damage

Eikan Mishima; Chisako Inoue; Ryusuke Inoue; Koki Ito; Yusuke Suzuki; Daisuke Jinno; Yuri Tsukui; Yosuke Akamatsu; Masatake Araki; Kimi Araki; Ritsuko Shimizu; Haruka Shinke; Takehiro Suzuki; Yoichi Takeuchi; Hisato Shima; Yasutoshi Akiyama; Takafumi Toyohara; Chitose Suzuki; Yoshikatu Saiki; Teiji Tominaga; Shigehito Miyagi; Naoki Kawagisihi; Tomoyoshi Soga; Takayoshi Ohkubo; Ken Ichi Yamamura; Yutaka Imai; Satohiro Masuda; Venkata Sabbisetti; Takaharu Ichimura; David B. Mount

Tissue damage by oxidative stress is a key pathogenic mechanism in various diseases, including AKI and CKD. Thus, early detection of oxidative tissue damage is important. Using a tRNA-specific modified nucleoside 1-methyladenosine (m1A) antibody, we show that oxidative stress induces a direct conformational change in tRNA structure that promotes subsequent tRNA fragmentation and occurs much earlier than DNA damage. In various models of tissue damage (ischemic reperfusion, toxic injury, and irradiation), the levels of circulating tRNA derivatives increased rapidly. In humans, the levels of circulating tRNA derivatives also increased under conditions of acute renal ischemia, even before levels of other known tissue damage markers increased. Notably, the level of circulating free m1A correlated with mortality in the general population (n=1033) over a mean follow-up of 6.7 years. Compared with healthy controls, patients with CKD had higher levels of circulating free m1A, which were reduced by treatment with pitavastatin (2 mg/d; n=29). Therefore, tRNA damage reflects early oxidative stress damage, and detection of tRNA damage may be a useful tool for identifying organ damage and forming a clinical prognosis.


The Journal of Neuroscience | 2013

Conditional Ablation of Neuroprogenitor Cells in Adult Mice Impedes Recovery of Poststroke Cognitive Function and Reduces Synaptic Connectivity in the Perforant Pathway

Chongran Sun; Hui Sun; Steven Wu; Chih Cheng Lee; Yosuke Akamatsu; Ruikang K. Wang; Steven G. Kernie; Jialing Liu

The causal relationship between neurogenesis and the recovery of poststroke cognitive function has not been properly explored. The current study aimed to determine whether depleting neuroprogenitor cells (NPCs) affects poststroke functional outcome in nestin-δ-HSV-TK-EGFP transgenic mice, in which the expression of a truncated viral thymidine kinase gene and EGFP was restricted to nestin-expressing NPCs. Ganciclovir (GCV; 200 mg/kg/d) or saline was continuously administered via osmotic pumps in mice for 4 weeks before the induction of experimental stroke. Both baseline and stroke-induced type 1 and type 2 NPCs were conditionally ablated. GCV eliminated NPCs in a duration-dependent fashion, but it did not attenuate the genesis of astroglia or oligodendrocytes in the peri-infarct cortex, nor did it affect infarct size or cerebral blood reperfusion after stroke. Transgenic stroke mice given GCV displayed impaired spatial learning and memory in the Barnes maze test compared with saline control or wild-type stroke mice given GCV, suggesting a contributing role of stroke-induced neurogenesis in the recovery of cognitive function. However, there was no significant difference in poststroke motor function between transgenic mice treated with GCV and those treated with vehicle, despite a significant ablation of NPCs in the subventricular zone of the former. Furthermore, nestin-δ-HSV-TK-EGFP mice treated with GCV had fewer retrogradely labeled neurons in the entorhinal cortex (EC) when injected with the polysynaptic viral marker PRV614 in the dentate gyrus (DG), suggesting that there might be reduced synaptic connectivity between the DG and EC following ablation of NPCs, which may contribute to impaired poststroke memory function.


World Neurosurgery | 2010

Malignant peripheral nerve sheath tumor arising from benign vestibular schwannoma treated by gamma knife radiosurgery after two previous surgeries: a case report with surgical and pathological observations.

Yosuke Akamatsu; Kensuke Murakami; Mika Watanabe; Hidefumi Jokura; Teiji Tominaga

BACKGROUND Gamma knife radiosurgery (GKRS) is an effective treatment for vestibular schwannomas with lower morbidity and mortality. However, malignant transformation associated with GKRS, although uncommon, has been reported in recent publications. METHODS We describe a case presenting with malignant peripheral nerve sheath tumor (MPNST) at 8 years after GKRS after incomplete resections. RESULTS The tumor appeared to be a typical benign schwannoma at the surgery preceding GKRS, and rapidly enlarged after long-term control, causing progressive neurological deterioration. Operative findings showed that the tumor was composed of two different components, and histopathology distinctively demonstrated MPNST and benign schwannoma. CONCLUSIONS The coexistence of benign and malignant components might indicate that the present MPNST had arisen from the benign schwannoma by transformation in association with GKRS.


The Journal of Neuroscience | 2015

Impaired Leptomeningeal Collateral Flow Contributes to the Poor Outcome following Experimental Stroke in the Type 2 Diabetic Mice

Yosuke Akamatsu; Yasuo Nishijima; Chih Cheng Lee; Shih Yen Yang; Lei Shi; Lin An; Ruikang K. Wang; Teiji Tominaga; Jialing Liu

Collateral status is an independent predictor of stroke outcome. However, the spatiotemporal manner in which collateral flow maintains cerebral perfusion during cerebral ischemia is poorly understood. Diabetes exacerbates ischemic brain damage, although the impact of diabetes on collateral dynamics remains to be established. Using Doppler optical coherent tomography, a robust recruitment of leptomeningeal collateral flow was detected immediately after middle cerebral artery (MCA) occlusion in C57BL/6 mice, and it continued to grow over the course of 1 week. In contrast, an impairment of collateral recruitment was evident in the Type 2 diabetic db/db mice, which coincided with a worse stroke outcome compared with their normoglycemic counterpart db/+, despite their equally well-collateralized leptomeningeal anastomoses. Similar to the wild-type mice, both db/+ and db/db mice underwent collateral growth 7 d after MCA stroke, although db/db mice still exhibited significantly reduced retrograde flow into the MCA territory chronically. Acutely induced hyperglycemia in the db/+ mice did not impair collateral flow after stroke, suggesting that the state of hyperglycemia alone was not sufficient to impact collateral flow. Human albumin was efficacious in improving collateral flow and outcome after stroke in the db/db mice, enabling perfusion to proximal MCA territory that was usually not reached by retrograde flow from anterior cerebral artery without treatment. Our results suggest that the impaired collateral status contributes to the exacerbated ischemic injury in mice with Type 2 diabetes, and modulation of collateral flow has beneficial effects on stroke outcome among these subjects.


Neuroscience Letters | 2011

Stachybotrys microspora triprenyl phenol-7, a novel fibrinolytic agent, suppresses superoxide production, matrix metalloproteinase-9 expression, and thereby attenuates ischemia/reperfusion injury in rat brain.

Yosuke Akamatsu; Atsushi Saito; Miki Fujimura; Hiroaki Shimizu; Moataz Mekawy; Keiji Hasumi; Teiji Tominaga

Stachybotrys microspora triprenyl phenol-7 (SMTP-7) is a novel fibrinolytic agent with anti-inflammatory effect. Previous study demonstrated that SMTP-7 further ameliorated infarction volume in a mouse embolic stroke model compared with tissue type plasminogen activator (tPA), but the reason SMTP-7 has more beneficial effect than tPA has not yet been determined. In the present study, we investigated whether SMTP-7 has an intrinsic neuroprotective effect against transient focal cerebral ischemia (tFCI). Sprague-Dawley rats were subjected to tFCI by intraluminal middle cerebral artery occlusion for 2h. Following induction of tFCI, rats were randomized into two groups based on the agent administered: SMTP-7 group and vehicle group. We examined cerebral infarction volume 24h after reperfusion, and evaluated superoxide production, the expressions of nitrotyrosine and matrix metalloproteinase-9 (MMP-9), which play major roles in secondary brain injury and hemorrhagic transformation. The findings showed that SMTP-7 significantly suppressed superoxide production, the expression of nitrotyrosine and MMP-9 after tFCI, and consequently attenuated ischemic neuronal damage. These results suggest that SMTP-7 has an intrinsic neuroprotective effect on ischemia/reperfusion injury through the suppression of oxidative stress and MMP-9 activation.


Brain Research | 2015

Collaterals: Implications in cerebral ischemic diseases and therapeutic interventions

Yasuo Nishijima; Yosuke Akamatsu; Phillip R. Weinstein; Jialing Liu

Despite the tremendous progress made in the treatment of cerebrovascular occlusive diseases, many patients suffering from ischemic brain injury still experience dismal outcomes. Although rehabilitation contributes to post-stroke functional recovery, there is no doubt that interventions that promote the restoration of blood supply are proven to minimize ischemic injury and improve recovery. In response to the acutely decreased blood perfusion during arterial occlusion, arteriogenesis, the compensation of blood flow through the collateral circulation during arterial obstructive diseases can act not only in a timely fashion but also much more efficiently compared to angiogenesis, the sprouting of new capillaries, and a mechanism occurring in a delayed fashion while increases the total resistance of the vascular bed of the affected territory. Interestingly, despite the vast differences between the two vascular remodeling mechanisms, some crucial growth factors and cytokines involved in angiogenesis are also required for arteriogenesis. Understanding the mechanisms underlying vascular remodeling after ischemic brain injury is a critical step towards the development of effective therapies for ischemic stroke. The present article will discuss our current views in vascular remodeling acutely after brain ischemia, namely arteriogenesis, and some relevant clinical therapies available on the horizon in augmenting collateral flow that hold promise in treating ischemic brain injury. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke.


Journal of Neurosurgery | 2012

Consistent focal cerebral ischemia without posterior cerebral artery occlusion and its real-time monitoring in an intraluminal suture model in mice

Yosuke Akamatsu; Hiroaki Shimizu; Atsushi Saito; Miki Fujimura; Teiji Tominaga

OBJECT In the intraluminal suture model of middle cerebral artery occlusion (MCAO) in the mouse, disturbance of blood flow from the internal carotid artery to the posterior cerebral artery (PCA) may affect the size of the infarction. In this study, PCA involvement in the model was investigated and modified for consistent MCAO without involving the PCA territory. METHODS Thirty-seven C57Bl/6 mice were randomly divided into 4 groups according to the length of coating over the tip of the suture (1, 2, 3, or 4 mm) and subjected to transient MCAO for 2 hours. Real-time topographical cerebral blood flow was monitored over both hemispheres by laser speckle flowmetry. After 24 hours of reperfusion, the infarct territories and volumes were evaluated. RESULTS The 1- and 2-mm coating groups showed all lesions in the MCA territory. In the 3- and 4-mm coating groups, 62.5% and 75% of mice, respectively, showed lesions in both the MCA and the PCA territories and other lesions in the MCA territory. Mice in the 1- and 2-mm coating groups had significantly smaller infarct volumes than the 3- and 4-mm groups. Laser speckle flowmetry was useful to distinguish whether the PCA territory would undergo infarction. CONCLUSIONS Small changes in the coating length of the intraluminal suture may be critical, and 1-2 mm of coating appeared to be optimal to produce consistent MCAO without involving the PCA territory. Laser speckle flowmetry could predict the territory of infarction and improve the consistency of the infarct size.


Stroke | 2016

Impaired Collateral Flow Compensation During Chronic Cerebral Hypoperfusion in the Type 2 Diabetic Mice

Yasuo Nishijima; Yosuke Akamatsu; Shih Yen Yang; Chih Cheng Lee; Utku Baran; Shaozhen Song; Ruikang K. Wang; Teiji Tominaga; Jialing Liu

Background and Purpose— The presence of collaterals is associated with a reduced risk of stroke and transient ischemic attack in patients with steno-occlusive carotid artery disease. Although metabolic syndrome negatively impacts collateral status, it is unclear whether and to what extent type 2 diabetes mellitus affects cerebral collateral flow regulation during hypoperfusion. Methods— We examined the spatial and temporal changes of the leptomeningeal collateral flow and the flow dynamics of the penetrating arterioles in the distal middle cerebral artery and anterior cerebral artery branches over 2 weeks after unilateral common carotid artery occlusion (CCAO) using optical coherent tomography in db/+ and db/db mice. We also assessed the temporal adaptation of the circle of Willis after CCAO by measuring circle of Willis vessel diameters. Results— After unilateral CCAO, db/db mice exhibited diminished leptomeningeal collateral flow compensation compared with db/+ mice, which coincided with a reduced dilation of distal anterior cerebral artery branches, leading to reduced flow not only in pial vessels but also in penetrating arterioles bordering the distal middle cerebral artery and anterior cerebral artery. However, no apparent cell death was detected in either strain of mice during the first week after CCAO. db/db mice also experienced a more severe early reduction in the vessel diameters of several ipsilateral main feeding arteries in the circle of Willis, in addition to a delayed post-CCAO adaptive response by 1 to 2 weeks, compared with db/+ mice. Conclusions— Type 2 diabetes mellitus is an additional risk factor for hemodynamic compromise during cerebral hypoperfusion, which may increase the severity and the risk of stroke or transient ischemic attack.


Journal of Neurosurgery | 2015

Consistent delayed unilateral neuronal death after modified transient focal cerebral ischemia in mice that mimics neuronal injury after transient global cerebral ischemia

Yasuo Nishijima; Kuniyasu Niizuma; Miki Fujimura; Yosuke Akamatsu; Hiroaki Shimizu; Teiji Tominaga

OBJECT Numerous studies have attempted to reveal the pathophysiology of ischemic neuronal injury using a representative transient global cerebral ischemia (tGCI) model in rodents; however, most of them have used gerbil or rat models. Recent advances in transgene and gene-knockout technology have enabled the precise molecular mechanisms of ischemic brain injury to be investigated. Because the predominant species for the study of genetic mutations is the mouse, a representative mouse model of tGCI is of particular importance. However, simple mouse models of tGCI are less reproducible; therefore, a more complex process or longer duration of ischemia, which causes a high mortality rate, has been used in previous tGCI models in mice. In this study, the authors aimed to overcome these problems and attempted to produce consistent unilateral delayed hippocampal CA1 neuronal death in mice. METHODS C57BL/6 mice were subjected to short-term unilateral cerebral ischemia using a 4-mm silicone-coated intraluminal suture to obstruct the origin of the posterior cerebral artery (PCA), and regional cerebral blood flow (rCBF) of the PCA territory was measured using laser speckle flowmetry. The mice were randomly assigned to groups of different ischemic durations and histologically evaluated at different time points after ischemia. The survival rate and neurological score of the group that experienced 15 minutes of ischemia were also evaluated. RESULTS Consistent neuronal death was observed in the medial CA1 subregion 4 days after 15 minutes of ischemia in the group of mice with a reduction in rCBF of < 65% in the PCA territory during ischemia. Morphologically degenerated cells were mostly positive for terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling and cleaved caspase 3 staining 4 days after ischemia. The survival rates of the mice 24 hours (n = 24), 4 days (n = 15), and 7 days (n = 7) after being subjected to 15 minutes of ischemia were 95.8%, 100%, and 100%, respectively, and the mice had slight motor deficits. CONCLUSIONS The authors established a model of delayed unilateral hippocampal neuronal death in C57BL/6 mice by inducing ischemia in the PCA territory using an intraluminal suture method and established inclusion criteria for PCAterritory rCBF monitored by laser speckle flowmetry. This model may be useful for investigating the precise molecular mechanisms of ischemic brain injury.

Collaboration


Dive into the Yosuke Akamatsu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jialing Liu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chih Cheng Lee

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Atsushi Saito

Tokyo University of Agriculture and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge