Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yosuke Nagata is active.

Publication


Featured researches published by Yosuke Nagata.


Journal of Cell Biology | 2004

Muscle satellite cells adopt divergent fates a mechanism for self-renewal?

Peter S. Zammit; Jon P. Golding; Yosuke Nagata; Valérie Hudon; Terence A. Partridge; Jonathan R. Beauchamp

Growth, repair, and regeneration of adult skeletal muscle depends on the persistence of satellite cells: muscle stem cells resident beneath the basal lamina that surrounds each myofiber. However, how the satellite cell compartment is maintained is unclear. Here, we use cultured myofibers to model muscle regeneration and show that satellite cells adopt divergent fates. Quiescent satellite cells are synchronously activated to coexpress the transcription factors Pax7 and MyoD. Most then proliferate, down-regulate Pax7, and differentiate. In contrast, other proliferating cells maintain Pax7 but lose MyoD and withdraw from immediate differentiation. These cells are typically located in clusters, together with Pax7−ve progeny destined for differentiation. Some of the Pax7+ve/MyoD−ve cells then leave the cell cycle, thus regaining the quiescent satellite cell phenotype. Significantly, noncycling cells contained within a cluster can be stimulated to proliferate again. These observations suggest that satellite cells either differentiate or switch from terminal myogenesis to maintain the satellite cell pool.


Journal of Cell Science | 2006

Pax7 and myogenic progression in skeletal muscle satellite cells

Peter S. Zammit; Frédéric Relaix; Yosuke Nagata; Ana Pérez Ruiz; Charlotte A. Collins; Terence A. Partridge; Jonathan R. Beauchamp

Skeletal muscle growth and regeneration are attributed to satellite cells - muscle stem cells resident beneath the basal lamina that surrounds each myofibre. Quiescent satellite cells express the transcription factor Pax7 and when activated, coexpress Pax7 with MyoD. Most then proliferate, downregulate Pax7 and differentiate. By contrast, others maintain Pax7 but lose MyoD and return to a state resembling quiescence. Here we show that Pax7 is able to drive transcription in quiescent and activated satellite cells, and continues to do so in those cells that subsequently cease proliferation and withdraw from immediate differentiation. We found that constitutive expression of Pax7 in satellite-cell-derived myoblasts did not affect MyoD expression or proliferation. Although maintained expression of Pax7 delayed the onset of myogenin expression it did not prevent, and was compatible with, myogenic differentiation. Constitutive Pax7 expression in a Pax7-null C2C12 subclone increased the proportion of cells expressing MyoD, showing that Pax7 can act genetically upstream of MyoD. However these Pax7-null cells were unable to differentiate into normal myotubes in the presence of Pax7. Therefore Pax7 may be involved in maintaining proliferation and preventing precocious differentiation, but does not promote quiescence.


Journal of Cell Biology | 2006

Entry of muscle satellite cells into the cell cycle requires sphingolipid signaling

Yosuke Nagata; Terence A. Partridge; Ryoichi Matsuda; Peter S. Zammit

Adult skeletal muscle is able to repeatedly regenerate because of the presence of satellite cells, a population of stem cells resident beneath the basal lamina that surrounds each myofiber. Little is known, however, of the signaling pathways involved in the activation of satellite cells from quiescence to proliferation, a crucial step in muscle regeneration. We show that sphingosine-1-phosphate induces satellite cells to enter the cell cycle. Indeed, inhibiting the sphingolipid-signaling cascade that generates sphingosine-1-phosphate significantly reduces the number of satellite cells able to proliferate in response to mitogen stimulation in vitro and perturbs muscle regeneration in vivo. In addition, metabolism of sphingomyelin located in the inner leaflet of the plasma membrane is probably the main source of sphingosine-1-phosphate used to mediate the mitogenic signal. Together, our observations show that sphingolipid signaling is involved in the induction of proliferation in an adult stem cell and a key component of muscle regeneration.


Journal of Histochemistry and Cytochemistry | 2006

Sphingomyelin levels in the plasma membrane correlate with the activation state of muscle satellite cells

Yosuke Nagata; Hideshi Kobayashi; Masato Umeda; Naoshi Ohta; Seiichiro Kawashima; Peter S. Zammit; Ryoichi Matsuda

Satellite cells are responsible for postnatal growth, hypertrophy, and regeneration of skeletal muscle. They are normally quiescent, and must be activated to fulfill these functions, yet little is known of how this is regulated. As a first step in determining the role of lipids in this process, we examined the dynamics of sphingomyelin in the plasma membrane. Sphingomyelin contributes to caveolae/lipid rafts, which act to concentrate signaling molecules, and is also a precursor of several bioactive lipids. Proliferating or differentiated C2C12 muscle cells did not bind lysenin, a sphingomyelin-specific binding protein, but noncycling reserve cells did. Quiescent satellite cells also bound lysenin, revealing high levels of sphingomyelin in their plasma membranes. On activation, however, the levels of sphingomyelin drop, so that lysenin did not label proliferating satellite cells. Although most satellite cell progeny differentiate, others stop cycling, maintain Pax7, downregulate MyoD, and escape immediate differentiation. Importantly, many of these Pax7-positive/MyoD-negative cells also regained lysenin binding on their surface, showing that the levels of sphingomyelin had again increased. Our observations show that quiescent satellite cells are characterized by high levels of sphingomyelin in their plasma membranes and that lysenin provides a novel marker of myogenic quiescence.


Experimental Cell Research | 2015

Zinc promotes proliferation and activation of myogenic cells via the PI3K/Akt and ERK signaling cascade

Kazuya Ohashi; Yosuke Nagata; Eiji Wada; Peter S. Zammit; Masataka Shiozuka; Ryoichi Matsuda

Skeletal muscle stem cells named muscle satellite cells are normally quiescent but are activated in response to various stimuli, such as injury and overload. Activated satellite cells enter the cell cycle and proliferate to produce a large number of myogenic progenitor cells, and these cells then differentiate and fuse to form myofibers. Zinc is one of the essential elements in the human body, and has multiple roles, including cell growth and DNA synthesis. However, the role of zinc in myogenic cells is not well understood, and is the focus of this study. We first examined the effects of zinc on differentiation of murine C2C12 myoblasts and found that zinc promoted proliferation, with an increased number of cells incorporating EdU, but inhibited differentiation with reduced myogenin expression and myotube formation. Furthermore, we used the C2C12 reserve cell model of myogenic quiescence to investigate the role of zinc on activation of myogenic cells. The number of reserve cells incorporating BrdU was increased by zinc in a dose dependent manner, with the number dramatically further increased using a combination of zinc and insulin. Akt and extracellular signal-regulated kinase (ERK) are downstream of insulin signaling, and both were phosphorylated after zinc treatment. The zinc/insulin combination-induced activation involved the phosphoinositide 3-kinase (PI3K)/Akt and ERK cascade. We conclude that zinc promotes activation and proliferation of myogenic cells, and this activation requires phosphorylation of PI3K/Akt and ERK as part of the signaling cascade.


Experimental Cell Research | 2014

Sphingosine-1-phosphate mediates epidermal growth factor-induced muscle satellite cell activation.

Yosuke Nagata; Kazuya Ohashi; Eiji Wada; Yuki Yuasa; Masataka Shiozuka; Yoshiaki Nonomura; Ryoichi Matsuda

Skeletal muscle can regenerate repeatedly due to the presence of resident stem cells, called satellite cells. Because satellite cells are usually quiescent, they must be activated before participating in muscle regeneration in response to stimuli such as injury, overloading, and stretch. Although satellite cell activation is a crucial step in muscle regeneration, little is known of the molecular mechanisms controlling this process. Recent work showed that the bioactive lipid sphingosine-1-phosphate (S1P) plays crucial roles in the activation, proliferation, and differentiation of muscle satellite cells. We investigated the role of growth factors in S1P-mediated satellite cell activation. We found that epidermal growth factor (EGF) in combination with insulin induced proliferation of quiescent undifferentiated mouse myoblast C2C12 cells, which are also known as reserve cells, in serum-free conditions. Sphingosine kinase activity increased when reserve cells were stimulated with EGF. Treatment of reserve cells with the D-erythro-N,N-dimethylsphingosine, Sphingosine Kinase Inhibitor, or siRNA duplexes specific for sphingosine kinase 1, suppressed EGF-induced C2C12 activation. We also present the evidence showing the S1P receptor S1P2 is involved in EGF-induced reserve cell activation. Moreover, we demonstrated a combination of insulin and EGF promoted activation of satellite cells on single myofibers in a manner dependent on SPHK and S1P2. Taken together, our observations show that EGF-induced satellite cell activation is mediated by S1P and its receptor.


American Journal of Pathology | 2014

Dietary Phosphorus Overload Aggravates the Phenotype of the Dystrophin-Deficient mdx Mouse

Eiji Wada; Mizuko Yoshida; Yoriko Kojima; Ikuya Nonaka; Kazuya Ohashi; Yosuke Nagata; Masataka Shiozuka; Munehiro Date; Tetsuo Higashi; Ichizo Nishino; Ryoichi Matsuda

Duchenne muscular dystrophy is a lethal X-linked disease with no effective treatment. Progressive muscle degeneration, increased macrophage infiltration, and ectopic calcification are characteristic features of the mdx mouse, a murine model of Duchenne muscular dystrophy. Because dietary phosphorus/phosphate consumption is increasing and adverse effects of phosphate overloading have been reported in several disease conditions, we examined the effects of dietary phosphorus intake in mdx mice phenotypes. On weaning, control and mdx mice were fed diets containing 0.7, 1.0, or 2.0 g phosphorus per 100 g until they were 90 days old. Dystrophic phenotypes were evaluated in cryosections of quadriceps and tibialis anterior muscles, and maximal forces and voluntary activity were measured. Ectopic calcification was analyzed by electron microscopy to determine the cells initially responsible for calcium deposition in skeletal muscle. Dietary phosphorus overload dramatically exacerbated the dystrophic phenotypes of mdx mice by increasing inflammation associated with infiltration of M1 macrophages. In contrast, minimal muscle necrosis and inflammation were observed in exercised mdx mice fed a low-phosphorus diet, suggesting potential beneficial therapeutic effects of lowering dietary phosphorus intake on disease progression. To our knowledge, this is the first report showing that dietary phosphorus intake directly affects muscle pathological characteristics of mdx mice. Dietary phosphorus overloading promoted dystrophic disease progression in mdx mice, whereas restricting dietary phosphorus intake improved muscle pathological characteristics and function.


Cell Structure and Function | 2009

Ectopic Calcification is Caused by Elevated Levels of Serum Inorganic Phosphate in Mdx Mice

Namiko Kikkawa; Tomohisa Ohno; Yosuke Nagata; Masataka Shiozuka; Toshihiro Kogure; Ryoichi Matsuda


Cell Structure and Function | 2010

FGF2 induces ERK phosphorylation through Grb2 and PKC during quiescent myogenic cell activation

Yosuke Nagata; Yusuke Honda; Ryoichi Matsuda


Neuromuscular Disorders | 2012

T.P.12 Dietary phosphate intake and exercise-induced stress induce severe muscle necrosis in adult mdx mice

Eiji Wada; Mizuko Yoshida; M. Date; Ikuya Nonaka; Yosuke Nagata; Ryoichi Matsuda

Collaboration


Dive into the Yosuke Nagata's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge