Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yosuke Nakayama is active.

Publication


Featured researches published by Yosuke Nakayama.


Journal of Immunology | 2009

α9 Integrin and Its Ligands Constitute Critical Joint Microenvironments for Development of Autoimmune Arthritis

Masashi Kanayama; Daisuke Kurotaki; Junko Morimoto; Asano T; Yutaka Matsui; Yosuke Nakayama; Yoshinari Saito; Koyu Ito; Chiemi Kimura; Norimasa Iwasaki; Koji Suzuki; Tanenobu Harada; Hong Mei Li; Jun Uehara; Tadaaki Miyazaki; Akio Minami; Shigeyuki Kon; Toshimitsu Uede

Osteopontin is critically involved in rheumatoid arthritis; however, the molecular cross-talk between osteopontin and joint cell components that leads to the inflammatory joint destruction is largely unknown. We found that not only osteopontin but also tenascin-C and their common receptor, α9 integrin, are expressed at arthritic joints. The local production of osteopontin and tenascin-C is mainly due to synovial fibroblasts and, to a lesser extent, synovial macrophages. Synovial fibroblasts and macrophages express α9 integrin, and autocrine and paracrine interactions of α9 integrin on synovial fibroblasts and macrophages and its ligands contribute differently to the production of proinflammatory cytokines and chemokines. α9 integrin is also involved in the recruitment and accumulation of inflammatory cells. Inhibition of α9 integrin function with an anti-α9 integrin Ab significantly reduces the production of arthrogenic cytokines and chemokines and ameliorates ongoing arthritis. Thus, we identified α9 integrin as a critical intrinsic regulator that controls the development of autoimmune arthritis.


Matrix Biology | 2009

The differential amino acid requirement within osteopontin in α4 and α9 integrin-mediated cell binding and migration

Koyu Ito; Shigeyuki Kon; Yosuke Nakayama; Daisuke Kurotaki; Yoshinari Saito; Masashi Kanayama; Chiemi Kimura; Hongyan Diao; Junko Morimoto; Yutaka Matsui; Toshimitsu Uede

Osteopontin (OPN) contains at least two major integrin recognition domains, Arg159-Gly-Asp161 (RGD) and Ser162-Val-Val-Tyr-Gly-Leu-Arg168 (SVVYGLR), recognized by alphavbeta3 and alpha5beta1 and alpha4 and alpha9 integrins, respectively. OPN is specifically cleaved by thrombin and matrix metalloproteinase (MMP)-3 or MMP-7 at a position of Arg168/Ser169 (R/S) and Gly166/Leu167 (G/L), respectively. We in this study examined the requirement of residues within SVVYGLR for the alpha4 and alpha9 integrin recognition and how MMP-cleavage influences the integrin recognition. The residues, Val164, Tyr165, and Leu167 are critical for alpha4 and alpha9 integrin recognition in both cell adhesion and cell migration. The residue Arg168 is additionally required for alpha9 integrin recognition in cell adhesion and this explains why alpha9 integrin binds to only thrombin cleaved form of OPN. alpha4 integrin is able to bind to SVVYG (MMP-cleaved form of RAA OPN-N half), while alpha9 integrin is not, supporting the above notion that Arg168 is additionally required for alpha9 integrin-mediated cell adhesion. The residue Val163 is important for alpha4, but not for alpha9 integrin recognition in cell migration. Importantly, we found that the replacement of Arg168 by Ala (R168A mutant) induces the augmentation of cell migration via alpha4 and alpha9 integrins.


Journal of Experimental Medicine | 2008

Syndecan-4 protects against osteopontin-mediated acute hepatic injury by masking functional domains of osteopontin

Shigeyuki Kon; Masahiro Ikesue; Chiemi Kimura; Momoe Aoki; Yosuke Nakayama; Yoshinari Saito; Daisuke Kurotaki; Hongyan Diao; Yutaka Matsui; Tatsuya Segawa; Masahiro Maeda; Tetsuhito Kojima; Toshimitsu Uede

Osteopontin (OPN) is a T helper type 1 immunoregulatory cytokine that plays a critical role in various inflammatory disorders. OPN exerts proinflammatory reactions through interaction with integrin receptors. OPN function can be modulated by protease digestion. However, the molecular mechanisms that regulate OPN function in vivo have not been elucidated. There are two putative heparin-binding domains (HBDs) within the OPN molecule, which may bind both heparin and heparin-like glycosaminoglycans such as syndecan. We show that expression of OPN and syndecan-4 is significantly up-regulated after concanavalin-A (ConA) injection. Syndecan-4 binds to one of the HBDs of OPN, which overlaps with the thrombin cleavage site of OPN. When OPN is associated with syndecan-4, syndecan-4 masks both the thrombin cleavage and the integrin binding sites within OPN. Importantly, syndecan-4–deficient (Syn4KO) mice are more susceptible to hepatic injury, and the thrombin-cleaved form of OPN is significantly elevated in Syn4KO mice as compared with wild-type mice after ConA injection. Finally, we demonstrate that administration of purified syndecan-4 protects mice from ConA-induced hepatic injury. Thus, syndecan-4 is a critical intrinsic regulator of inflammatory reactions via its effects on OPN function and is a potential novel therapeutic tool for treating inflammatory diseases.


Diabetes | 2013

DNA Aptamer Raised Against AGEs Blocks the Progression of Experimental Diabetic Nephropathy

Yusuke Kaida; Kei Fukami; Takanori Matsui; Yuichiro Higashimoto; Yuri Nishino; Nana Obara; Yosuke Nakayama; Ryotaro Ando; Maki Toyonaga; Seiji Ueda; Masayoshi Takeuchi; Hiroyoshi Inoue; Seiya Okuda; Sho-ichi Yamagishi

Advanced glycation end products (AGEs) and their receptor (RAGE) play a role in diabetic nephropathy. We screened DNA aptamer directed against AGEs (AGEs-aptamer) in vitro and examined its effects on renal injury in KKAy/Ta mice, an animal model of type 2 diabetes. Eight-week-old male KKAy/Ta or C57BL/6J mice received continuous intraperitoneal infusion of AGEs- or control-aptamer for 8 weeks. AGEs-aptamer was detected and its level was increased in the kidney for at least 7 days. The elimination half-lives of AGEs-aptamer in the kidney were about 7 days. Compared with those in C57BL/6J mice, glomerular AGEs levels were significantly increased in KKAy/Ta mice, which were blocked by AGEs-aptamer. Urinary albumin and 8-hydroxy-2′-deoxy-guanosine levels were increased, and glomerular hypertrophy and enhanced extracellular matrix accumulation were observed in KKAy/Ta mice, all of which were prevented by AGEs-aptamer. Moreover, AGEs-aptamer significantly reduced gene expression of RAGE, monocyte chemoattractant protein-1, connective tissue growth factor, and type IV collagen both in the kidney of KKAy/Ta mice and in AGE-exposed human cultured mesangial cells. Our present data suggest that continuous administration of AGEs-aptamer could protect against experimental diabetic nephropathy by blocking the AGEs-RAGE axis and may be a feasible and promising therapeutic strategy for the treatment of diabetic nephropathy.


Diabetes and Vascular Disease Research | 2013

Involvement of advanced glycation end product-induced asymmetric dimethylarginine generation in endothelial dysfunction

Ryotaro Ando; Seiji Ueda; Sho-ichi Yamagishi; Hiroshi Miyazaki; Yusuke Kaida; Kumiko Kaifu; Miyuki Yokoro; Yosuke Nakayama; Nana Obara; Kei Fukami; Masayoshi Takeuchi; Seiya Okuda

Asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase inhibitor, plays a role in endothelial dysfunction, an initial step of atherosclerosis. Advanced glycation end products (AGEs) also contribute to accelerated atherosclerosis. However, a pathophysiological crosstalk between ADMA and AGEs remains unclear. In this study, we investigated the relationship between ADMA and AGE level in patients with end-stage renal disease (ESRD) due to diabetic nephropathy. We also examined whether and how AGEs increased ADMA generation by cultured endothelial cells (ECs). Plasma ADMA levels were positively associated with serum AGE level and were inversely correlated with endothelial function determined by flow-mediated vasodilatation. AGEs dose dependently increased reactive oxygen species (ROS) generation in ECs, which was blocked by antisense DNA raised against receptor for AGEs (RAGE). Furthermore, AGEs decreased messenger RNA (mRNA) level of dimethylarginine dimethylaminohydrolase (DDAH)-II, an enzyme for ADMA degradation, reduced its total enzymatic activity and resultantly increased ADMA, all of which were completely blocked by an antioxidant, N-acetylcysteine. These results suggest that the AGE-RAGE-mediated ROS generation could be involved in endothelial dysfunction in diabetic ESRD patients partly by increasing the ADMA generation via suppression of DDAH activity in ECs.


Scientific Reports | 2015

Oral administration of Lactobacillus gasseri SBT2055 is effective for preventing influenza in mice

Yosuke Nakayama; Tomohiro Moriya; Fumihiko Sakai; Noriko Ikeda; Takuya Shiozaki; Tomohiro Hosoya; Hisako Nakagawa; Tadaaki Miyazaki

The Lactobacillus gasseri SBT2055 (LG2055) is a probiotic lactic acid bacterium with properties such as bile tolerance and ability to improve the intestinal environment. In this study, we established that the oral administration of LG2055 exhibits efficacy to protect mice infected with the influenza virus A/PR8. The body weight losses were lower with the LG2055 administration after the PR8 virus infection. At 5 days after the infection, the virus titer was significantly decreased as was the amount of produced IL-6 in the lung tissue, the number of total cells in the bronchoalveolar lavage fluid was reduced by the LG2055 administration. The expression of the Mx1 and Oas1a genes, critical for the viral clearance in the lung tissues was increased by the pre-treatment with LG2055. These findings suggest that the LG2055 administration is effective for the protection against influenza A virus infection by the down-regulation of viral replication through the induction of antiviral genes expression.


Nephrology Dialysis Transplantation | 2013

Experimental diabetic nephropathy is accelerated in matrix metalloproteinase-2 knockout mice

Yoshimi Takamiya; Kei Fukami; Sho-ichi Yamagishi; Yusuke Kaida; Yosuke Nakayama; Nana Obara; Ryuji Iwatani; Ryotaro Ando; Kiyomi Koike; Takanori Matsui; Yuri Nishino; Seiji Ueda; Mark E. Cooper; Seiya Okuda

BACKGROUND Matrix metalloproteinase-2 (MMP-2) is responsible for the degradation of various types of extracellular matrix (ECM) proteins such as type IV collagen. Decreased MMP-2 expression and activity has been generally thought to contribute to increased accumulation of ECM at the advanced stage of diabetic nephropathy. However, the kinetics and role of MMP-2 in the early phase of diabetic nephropathy remain unclear. To address this issue, we examined whether streptozotocin (STZ)-induced early diabetic nephropathy was accelerated in MMP-2 knockout (KO) mice. METHODS Diabetes was induced by the injection of STZ in 6-week-old control and MMP-2 KO mice. Animals were killed after 16 weeks of diabetes of after observation alone. RESULTS Compared with non-diabetic control mice, renal MMP-2 expression and activity were increased in 16-week old diabetic mice. Serum levels of blood urea nitrogen and creatinine and urinary excretion levels of albumin and N-acetyl-β-D-glucosaminidase were significantly elevated in diabetic MMP-2 KO mice when compared with wild-type diabetic littermates. Further, accumulation of ECM in the glomeruli and atrophy and fibrosis in the tubulointerstitium were exacerbated, and renal α-smooth muscle actin expression was enhanced in diabetic MMP-2 KO mice. CONCLUSIONS Our present study suggests that renal expression and activity of MMP-2 are increased as a compensatory mechanism in the early phase of diabetic nephropathy. Since MMP-2 could play a protective role against the progression of diabetic nephropathy, further enhancement of MMP-2 expression and/or activity in the kidney may be a therapeutic target for the treatment of early diabetic nephropathy.


PLOS ONE | 2012

β-Glucan derived from Aureobasidium pullulans is effective for the prevention of influenza in mice.

Daisuke Muramatsu; Atsushi Iwai; Shiho Aoki; Hirohumi Uchiyama; Koji Kawata; Yosuke Nakayama; Yasuhiro Nikawa; Kisato Kusano; Mitsuyasu Okabe; Tadaaki Miyazaki

β-(1→3)-D-glucans with β-(1→6)-glycosidic linked branches produced by mushrooms, yeast and fungi are known to be an immune activation agent, and are used in anti-cancer drugs or health-promoting foods. In this report, we demonstrate that oral administration of Aureobasidium pullulans-cultured fluid (AP-CF) enriched with the β-(1→3),(1→6)-D-glucan exhibits efficacy to protect mice infected with a lethal titer of the A/Puerto Rico/8/34 (PR8; H1N1) strain of influenza virus. The survival rate of the mice significantly increased by AP-CF administration after sublethal infection of PR8 virus. The virus titer in the mouse lung homogenates was significantly decreased by AP-CF administration. No significant difference in the mRNA expression of inflammatory cytokines, and in the population of lymphocytes was observed in the lungs of mice administered with AP-CF. Interestingly, expression level for the mRNA of virus sensors, RIG-I (retinoic acid-inducible gene-I) and MDA5 (melanoma differentiation-associated protein 5) strongly increased at 5 hours after the stimulation of A. pullulans-produced purified β-(1→3),(1→6)-D-glucan (AP-BG) in murine macrophage-derived RAW264.7 cells. Furthermore, the replication of PR8 virus was significantly repressed by pre-treatment of AP-BG. These findings suggest the increased expression of virus sensors is effective for the prevention of influenza by the inhibition of viral replication with the administration of AP-CF.


PLOS ONE | 2014

Lactobacillus gasseri SBT2055 Induces TGF-β Expression in Dendritic Cells and Activates TLR2 Signal to Produce IgA in the Small Intestine

Fumihiko Sakai; Tomohiro Hosoya; Aiko Ono-Ohmachi; Ken Ukibe; Akihiro Ogawa; Tomohiro Moriya; Yukio Kadooka; Takuya Shiozaki; Hisako Nakagawa; Yosuke Nakayama; Tadaaki Miyazaki

Probiotic bacteria provide benefits in enhancing host immune responses and protecting against infection. Induction of IgA production by oral administration of probiotic bacteria in the intestine has been considered to be one reason for this beneficial effect, but the mechanisms of the effect are poorly understood. Lactobacillus gasseri SBT2055 (LG2055) is a probiotic bacterium with properties such as bile tolerance, ability to improve the intestinal environment, and it has preventive effects related to abdominal adiposity. In this study, we have found that oral administration of LG2055 induced IgA production and increased the rate of IgA+ cell population in Peyers patch and in the lamina propria of the mouse small intestine. The LG2055 markedly increased the amount of IgA in a co-culture of B cells and bone marrow derived dendritic cells (BMDC), and TLR2 signal is critical for it. In addition, it is demonstrated that LG2055 stimulates BMDC to promote the production of TGF-β, BAFF, IL-6, and IL-10, all critical for IgA production from B cells. Combined stimulation of B cells with BAFF and LG2055 enhanced the induction of IgA production. Further, TGF-β signal was shown to be critical for LG2055-induced IgA production in the B cell and BMDC co-culture system, but TGF-β did not induce IgA production in a culture of only B cells stimulated with LG2055. Furthermore, TGF-β was critical for the production of BAFF, IL-6, IL-10, and TGF-β itself from LG2055-stimulated BMDC. These results demonstrate that TGF-β was produced by BMDC stimulated with LG2055 and it has an autocrine/paracrine function essential for BMDC to induce the production of BAFF, IL-6, and IL-10.


Journal of Immunology | 2011

CSF-1–Dependent Red Pulp Macrophages Regulate CD4 T Cell Responses

Daisuke Kurotaki; Shigeyuki Kon; Kyeonghwa Bae; Koyu Ito; Yutaka Matsui; Yosuke Nakayama; Masashi Kanayama; Chiemi Kimura; Yoshinori Narita; Takashi Nishimura; Kazuya Iwabuchi; Matthias Mack; Nico van Rooijen; Shimon Sakaguchi; Toshimitsu Uede; Junko Morimoto

The balance between immune activation and suppression must be regulated to maintain immune homeostasis. Tissue macrophages (MΦs) constitute the major cellular subsets of APCs within the body; however, how and what types of resident MΦs are involved in the regulation of immune homeostasis in the peripheral lymphoid tissues are poorly understood. Splenic red pulp MΦ (RPMs) remove self-Ags, such as blood-borne particulates and aged erythrocytes, from the blood. Although many scattered T cells exist in the red pulp of the spleen, little attention has been given to how RPMs prevent harmful T cell immune responses against self-Ags. In this study, we found that murine splenic F4/80hiMac-1low MΦs residing in the red pulp showed different expression patterns of surface markers compared with F4/80+Mac-1hi monocytes/MΦs. Studies with purified cell populations demonstrated that F4/80hiMac-1low MΦs regulated CD4+ T cell responses by producing soluble suppressive factors, including TGF-β and IL-10. Moreover, F4/80hiMac-1low MΦs induced the differentiation of naive CD4+ T cells into functional Foxp3+ regulatory T cells. Additionally, we found that the differentiation of F4/80hiMac-1low MΦs was critically regulated by CSF-1, and in vitro-generated bone marrow-derived MΦs induced by CSF-1 suppressed CD4+ T cell responses and induced the generation of Foxp3+ regulatory T cells in vivo. These results suggested that splenic CSF-1–dependent F4/80hiMac-1low MΦs are a subpopulation of RPMs and regulate peripheral immune homeostasis.

Collaboration


Dive into the Yosuke Nakayama's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge