Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yosuke Umehara is active.

Publication


Featured researches published by Yosuke Umehara.


The Plant Cell | 2000

Hd1, a Major Photoperiod Sensitivity Quantitative Trait Locus in Rice, Is Closely Related to the Arabidopsis Flowering Time Gene CONSTANS

Masahiro Yano; Yuichi Katayose; Motoyuki Ashikari; Utako Yamanouchi; Lisa Monna; Takuichi Fuse; Tomoya Baba; Kimiko Yamamoto; Yosuke Umehara; Yoshiaki Nagamura; Takuji Sasaki

A major quantitative trait locus (QTL) controlling response to photoperiod, Hd1, was identified by means of a map-based cloning strategy. High-resolution mapping using 1505 segregants enabled us to define a genomic region of ∼12 kb as a candidate for Hd1. Further analysis revealed that the Hd1 QTL corresponds to a gene that is a homolog of CONSTANS in Arabidopsis. Sequencing analysis revealed a 43-bp deletion in the first exon of the photoperiod sensitivity 1 (se1) mutant HS66 and a 433-bp insertion in the intron in mutant HS110. Se1 is allelic to the Hd1 QTL, as determined by analysis of two se1 mutants, HS66 and HS110. Genetic complementation analysis proved the function of the candidate gene. The amount of Hd1 mRNA was not greatly affected by a change in length of the photoperiod. We suggest that Hd1 functions in the promotion of heading under short-day conditions and in inhibition under long-day conditions.


Nature | 2003

Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases

Simona Radutoiu; Lene Heegaard Madsen; Esben Bjørn Madsen; Hubert H. Felle; Yosuke Umehara; Mette Grønlund; Shusei Sato; Yasukazu Nakamura; Satoshi Tabata; Niels Sandal; Jens Stougaard

Although most higher plants establish a symbiosis with arbuscular mycorrhizal fungi, symbiotic nitrogen fixation with rhizobia is a salient feature of legumes. Despite this host range difference, mycorrhizal and rhizobial invasion shares a common plant-specified genetic programme controlling the early host interaction. One feature distinguishing legumes is their ability to perceive rhizobial-specific signal molecules. We describe here two LysM-type serine/threonine receptor kinase genes, NFR1 and NFR5, enabling the model legume Lotus japonicus to recognize its bacterial microsymbiont Mesorhizobium loti. The extracellular domains of the two transmembrane kinases resemble LysM domains of peptidoglycan- and chitin-binding proteins, suggesting that they may be involved directly in perception of the rhizobial lipochitin-oligosaccharide signal. We show that NFR1 and NFR5 are required for the earliest physiological and cellular responses to this lipochitin-oligosaccharide signal, and demonstrate their role in the mechanism establishing susceptibility of the legume root for bacterial infection.


Nature | 2005

Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots

Haruko Imaizumi-Anraku; Naoya Takeda; Myriam Charpentier; Jillian Perry; Hiroki Miwa; Yosuke Umehara; Hiroshi Kouchi; Yasuhiro Murakami; Lonneke Mulder; Kate Vickers; Jodie Pike; J. Allan Downie; Trevor L. Wang; Shusei Sato; Erika Asamizu; Satoshi Tabata; Makoto Yoshikawa; Yoshikatsu Murooka; Guo-Jiang Wu; Masayoshi Kawaguchi; Shinji Kawasaki; Martin Parniske; Makoto Hayashi

The roots of most higher plants form arbuscular mycorrhiza, an ancient, phosphate-acquiring symbiosis with fungi, whereas only four related plant orders are able to engage in the evolutionary younger nitrogen-fixing root-nodule symbiosis with bacteria. Plant symbioses with bacteria and fungi require a set of common signal transduction components that redirect root cell development. Here we present two highly homologous genes from Lotus japonicus, CASTOR and POLLUX, that are indispensable for microbial admission into plant cells and act upstream of intracellular calcium spiking, one of the earliest plant responses to symbiotic stimulation. Surprisingly, both twin proteins are localized in the plastids of root cells, indicating a previously unrecognized role of this ancient endosymbiont in controlling intracellular symbioses that evolved more recently.


The Plant Cell | 2007

NUCLEOPORIN85 Is Required for Calcium Spiking, Fungal and Bacterial Symbioses, and Seed Production in Lotus japonicus

Katsuharu Saito; Makoto Yoshikawa; Koji Yano; Hiroki Miwa; Hisaki Uchida; Erika Asamizu; Shusei Sato; Satoshi Tabata; Haruko Imaizumi-Anraku; Yosuke Umehara; Hiroshi Kouchi; Yoshikatsu Murooka; Krzysztof Szczyglowski; J. Allan Downie; Martin Parniske; Makoto Hayashi; Masayoshi Kawaguchi

In Lotus japonicus, seven genetic loci have been identified thus far as components of a common symbiosis (Sym) pathway shared by rhizobia and arbuscular mycorrhizal fungi. We characterized the nup85 mutants (nup85-1, -2, and -3) required for both symbioses and cloned the corresponding gene. When inoculated with Glomus intraradices, the hyphae managed to enter between epidermal cells, but they were unable to penetrate the cortical cell layer. The nup85-2 mutation conferred a weak and temperature-sensitive symbiotic phenotype, which resulted in low arbuscule formation at 22°C but allowed significantly higher arbuscule formation in plant cortical cells at 18°C. On the other hand, the nup85 mutants either did not form nodules or formed few nodules. When treated with Nod factor of Mesorhizobium loti, nup85 roots showed a high degree of root hair branching but failed to induce calcium spiking. In seedlings grown under uninoculated conditions supplied with nitrate, nup85 did not arrest plant growth but significantly reduced seed production. NUP85 encodes a putative nucleoporin with extensive similarity to vertebrate NUP85. Together with symbiotic nucleoporin NUP133, L. japonicus NUP85 might be part of a specific nuclear pore subcomplex that is crucial for fungal and rhizobial colonization and seed production.


Plant and Cell Physiology | 2010

How many peas in a pod? Legume genes responsible for mutualistic symbioses underground.

Hiroshi Kouchi; Haruko Imaizumi-Anraku; Makoto Hayashi; Tsuneo Hakoyama; Tomomi Nakagawa; Yosuke Umehara; Norio Suganuma; Masayoshi Kawaguchi

The nitrogen-fixing symbiosis between legume plants and Rhizobium bacteria is the most prominent plant–microbe endosymbiotic system and, together with mycorrhizal fungi, has critical importance in agriculture. The introduction of two model legume species, Lotus japonicus and Medicago truncatula, has enabled us to identify a number of host legume genes required for symbiosis. A total of 26 genes have so far been cloned from various symbiotic mutants of these model legumes, which are involved in recognition of rhizobial nodulation signals, early symbiotic signaling cascades, infection and nodulation processes, and regulation of nitrogen fixation. These accomplishments during the past decade provide important clues to understanding not only the molecular mechanisms underlying plant–microbe endosymbiotic associations but also the evolutionary aspects of nitrogen-fixing symbiosis between legume plants and Rhizobium bacteria. In this review we survey recent progress in molecular genetic studies using these model legumes.


Plant Physiology | 2003

The Sym35 Gene Required for Root Nodule Development in Pea Is an Ortholog of Nin from Lotus japonicus

Alexey Y. Borisov; Lene Heegaard Madsen; Viktor E. Tsyganov; Yosuke Umehara; Vera Voroshilova; Arsen O. Batagov; Niels Sandal; Anita Mortensen; Leif Schauser; Noel Ellis; Igor A. Tikhonovich; Jens Stougaard

Comparative phenotypic analysis of pea (Pisum sativum) sym35 mutants and Lotus japonicus nin mutants suggested a similar function for thePsSym35 and LjNin genes in early stages of root nodule formation. Both the pea and L.japonicus mutants are non-nodulating but normal in their arbuscular mycorrhizal association. Both are characterized by excessive root hair curling in response to the bacterial microsymbiont, lack of infection thread initiation, and absence of cortical cell divisions. To investigate the molecular basis for the similarity, we cloned and sequenced the PsNin gene, taking advantage of sequence information from the previously cloned LjNin gene. An RFLP analysis on recombinant inbred lines mapped PsNinto the same chromosome arm as the PsSym35 locus and direct evidence demonstrating that PsNin is thePsSym35 gene was subsequently obtained by cosegregation analysis and sequencing of three independent Pssym35mutant alleles. L. japonicus and pea root nodules develop through different organogenic pathways, so it was of interest to compare the expression of the two orthologous genes during nodule formation. Overall, a similar developmental regulation of thePsNin and LjNin genes was shown by the transcriptional activation in root nodules of L. japonicus and pea. In the indeterminate pea nodules,PsNin is highly expressed in the meristematic cells of zone I and in the cells of infection zone II, corroborating expression of LjNin in determinate nodule primordia. At the protein level, seven domains, including the putative DNA binding/dimerization RWP-RK motif and the PB1 heterodimerization domain, are conserved between the LjNIN and PsNIN proteins.


Molecular Breeding | 1995

Construction and characterization of a rice YAC library for physical mapping

Yosuke Umehara; Akiko Inagaki; Hiroshi Tanoue; Yuji Yasukochi; Yoshiaki Nagamura; Shoko Saji; Yoshiaki Otsuki; Tatsuhito Fujimura; Nori Kurata; Yuzo Minobe

Genomic libraries of rice,Oryza sativa L. cv. Nipponbare, in yeast artificial chromosomes were prepared for construction of a rice physical map. High-molecular-weight genomic DNA was extracted from cultured suspension cells embedded in agarose plugs. After size fractionation of theEco RI- andNot I-digested DNA fragments, they were ligated with pYAC4 and pYAC55, respectively, and used to transformSaccharomyces cerevisiae AB1380. A total of 6932 clones were obtained containing on average ca. 350 kb DNA. The YAC library was estimated to contain six haploid genome equivalents. The YACs were examined for their chimerism by mapping both ends on an RFLP linkage map. Most YACs withEco RI fragments below 400 kb were intact colinear clones. About 40% of clones were chimeric. Genetic mapping of end clones from large size YACs revealed that the physical distance corresponding to 1 cM genetic distance varies from 120 to 1000 kb, depending on the chromosome region. To select and order YAC clones for making contig maps, high-density colony hybridization using ECL was applied. With several probes, at least one and at most ten YAC clones could be selected in this library. The library size and clone insert size indicate that this YAC library is suitable for physical map construction and map-based cloning.


Molecular Plant-microbe Interactions | 2006

Genetics of Symbiosis in Lotus japonicus: Recombinant Inbred Lines, Comparative Genetic Maps, and Map Position of 35 Symbiotic Loci

Niels Sandal; Thomas Rørby Petersen; Jeremy D. Murray; Yosuke Umehara; Bogumil Karas; Koji Yano; Hirotaka Kumagai; Makoto Yoshikawa; Katsuharu Saito; Masaki Hayashi; Yasuhiro Murakami; Xinwang Wang; Tsuneo Hakoyama; Haruko Imaizumi-Anraku; Shusei Sato; Tomohiko Kato; Wenli Chen; Md. Shakhawat Hossain; Satoshi Shibata; Trevor L. Wang; Keisuke Yokota; Knud Larsen; Norihito Kanamori; Esben Madsen; Simona Radutoiu; Lene Heegaard Madsen; Talida Gratiela Radu; Lene Krusell; Yasuhiro Ooki; Mari Banba

Development of molecular tools for the analysis of the plant genetic contribution to rhizobial and mycorrhizal symbiosis has provided major advances in our understanding of plant-microbe interactions, and several key symbiotic genes have been identified and characterized. In order to increase the efficiency of genetic analysis in the model legume Lotus japonicus, we present here a selection of improved genetic tools. The two genetic linkage maps previously developed from an interspecific cross between L. japonicus Gifu and L. filicaulis, and an intraspecific cross between the two ecotypes L. japonicus Gifu and L. japonicus MG-20, were aligned through a set of anchor markers. Regions of linkage groups, where genetic resolution is obtained preferentially using one or the other parental combination, are highlighted. Additional genetic resolution and stabilized mapping populations were obtained in recombinant inbred lines derived by a single seed descent from the two populations. For faster mapping of new loci, a selection of reliable markers spread over the chromosome arms provides a common framework for more efficient identification of new alleles and new symbiotic loci among uncharacterized mutant lines. Combining resources from the Lotus community, map positions of a large collection of symbiotic loci are provided together with alleles and closely linked molecular markers. Altogether, this establishes a common genetic resource for Lotus spp. A web-based version will enable this resource to be curated and updated regularly.


Development | 2012

Positive and negative regulation of cortical cell division during root nodule development in Lotus japonicus is accompanied by auxin response.

Takuya Suzaki; Koji Yano; Momoyo Ito; Yosuke Umehara; Norio Suganuma; Masayoshi Kawaguchi

Nodulation is a form of de novo organogenesis that occurs mainly in legumes. During early nodule development, the host plant root is infected by rhizobia that induce dedifferentiation of some cortical cells, which then proliferate to form the symbiotic root nodule primordium. Two classic phytohormones, cytokinin and auxin, play essential roles in diverse aspects of cell proliferation and differentiation. Although recent genetic studies have established how activation of cytokinin signaling is crucial to the control of cortical cell differentiation, the physiological pathways through which auxin might act in nodule development are poorly characterized. Here, we report the detailed patterns of auxin accumulation during nodule development in Lotus japonicus. Our analyses showed that auxin predominantly accumulates in dividing cortical cells and that NODULE INCEPTION, a key transcription factor in nodule development, positively regulates this accumulation. Additionally, we found that auxin accumulation is inhibited by a systemic negative regulatory mechanism termed autoregulation of nodulation (AON). Analysis of the constitutive activation of LjCLE-RS genes, which encode putative root-derived signals that function in AON, in combination with the determination of auxin accumulation patterns in proliferating cortical cells, indicated that activation of LjCLE-RS genes blocks the progress of further cortical cell division, probably through controlling auxin accumulation. Our data provide evidence for the existence of a novel fine-tuning mechanism that controls nodule development in a cortical cell stage-dependent manner.


Plant Molecular Biology | 1994

A DIOXYGENASE GENE (IDS2) EXPRESSED UNDER IRON DEFICIENCY CONDITIONS IN THE ROOTS OF HORDEUM VULGARE

Nami Okumura; Naoko-Kishi Nishizawa; Yosuke Umehara; Tomoko Ohata; Hiromi Nakanishi; Takahiro Yamaguchi; Mitsuo Chino; Satoshi Mori

A λzapII cDNA library was constructed from mRNA isolated from Fe-deficient barley roots and screened with cDNA probes made from mRNA of Fe-deficient and Fe-sufficient (control) barley roots. Seven clones were selected. Among them a clone having the putative full-length mRNA of dioxygenase as judged by northern hybridization was selected and named Ids2 (iron deficiency-specific clone 2). Using a cDNA fragment as probe, two clones from the genomic library (λEMBL-III) were isolated and one was sequenced. The predicted amino acid sequence of Ids2 resembled that of 2-oxoglutarate-dependent dioxygenase. Ids2 is expressed in the Fe-deficient barley roots but is not in the leaves. The expression is repressed by the availability of Fe. Ids2 was also strongly expressed under Mn deficiency and weakly under Zn deficiency or excess NaCl (0.5%). The upstream 5′-flanking region of Ids2 has a root-specific cis element of the CaMV 35S promoter and a nodule-specific element of leghemoglobin, a metal regulatory element (MRE) and several Cu regulatory elements (UAS) of yeast metallothionein (CUP1).

Collaboration


Dive into the Yosuke Umehara's collaboration.

Top Co-Authors

Avatar

Hiroshi Kouchi

International Christian University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge