Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where You-Bo Zhang is active.

Publication


Featured researches published by You-Bo Zhang.


Fitoterapia | 2015

New coumarins from the roots of Angelica dahurica var. formosana cv. Chuanbaizhi and their inhibition on NO production in LPS-activated RAW264.7 cells

Gai-Gai Deng; Wei Wei; Xiu-Wei Yang; You-Bo Zhang; Wei Xu; Ning-Bo Gong; Yang Lü; Feng-Feng Wang

A new linear pyranocoumarin named (-)-hydroxydecursinol (1) and a new biscoumarin named (±)-dahuribiscoumarin (2), together with six known compounds isoimperatorin (3), imperatorin (4), phellopterin (5), isodemethylfuropinarine (6), demethylfuropinarine (7), and (+)-decursinol (8) were isolated from the 75% ethanolic extract of the roots of Angelica dahurica var. formosana cv. Chuanbaizhi. Their structures were elucidated by extensive spectroscopic techniques, including 2D NMR spectroscopy and mass spectrometry, and the structure of 2 was confirmed by single-crystal X-ray diffraction. All of the isolated compounds were evaluated for the inhibition against nitric oxide (NO) production in the lipopolysaccharide (LPS)-activated RAW264.7 macrophage cell line, and exhibited the inhibitory activity on NO production in a concentration-dependent manner. Furthermore, real-time PCR analysis revealed that compounds 2, 5-8 could significantly suppress the expression levels of inducible nitric oxide synthase mRNA in a concentration-dependent manner. And their primary structure-activity relationships of NO inhibitory effects were also briefly discussed. These compounds are potential candidates for further bioassay studies to determine their suitability as drug leads.


Journal of Ginseng Research | 2016

Rapid characterization of ginsenosides in the roots and rhizomes of Panax ginseng by UPLC-DAD-QTOF-MS/MS and simultaneous determination of 19 ginsenosides by HPLC-ESI-MS

Hong-Ping Wang; You-Bo Zhang; Xiu-Wei Yang; Da-Qing Zhao; Ying-Ping Wang

Background Ginsenosides are the characteristic and principal components which manifest a variety of the biological and pharmacological activities of the roots and rhizomes of Panax ginseng (GRR). This study was carried out to qualitatively and quantitatively determine the ginsenosides in the cultivated and forest GRR. Methods A rapid and sensitive ultra-high-performance liquid chromatography coupled with diode-array detector and quadrupole/time of flight tandem mass spectrometry (UPLC-DAD-QTOF-MS/MS) was applied to the qualitative analysis of ginsenosides and a 4000 QTRAP triple quadrupole tandem mass spectrometer (HPLC-ESI-MS) was applied to quantitative analysis of 19 ginsenosides. Results In the qualitative analysis, all ingredients were separated in 10 min. A total of 131 ginsenosides were detected in cultivated and forest GRR. The method for the quantitative determination was validated for linearity, precision, and limits of detection and quantification. 19 representative ginsenosides were quantitated. The total content of all 19 ginsenosides in the forest GRR were much higher than those in the cultivated GRR, and were increased with the growing ages. Conclusion This newly developed analysis method could be applied to the quality assessment of GRR as well as the distinction between cultivated and forest GRR.


Molecules | 2015

Simultaneous Determination of Eight Ginsenosides in Rat Plasma by Liquid Chromatography–Electrospray Ionization Tandem Mass Spectrometry: Application to Their Pharmacokinetics

Li-Yuan Ma; You-Bo Zhang; Qi-Le Zhou; Yan-Fang Yang; Xiu-Wei Yang

A high-performance liquid chromatography–electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) method was successfully developed and validated for the identification and determination of eight ginsenosides: ginsenoside Rg1 (1); 20(S)-ginsenoside Rh1 (2); 20(S)-ginsenoside Rg2 (3); 20(R)-ginsenoside Rh1 (4); 20(R)-ginsenoside Rg2 (5); ginsenoside Rd (6); 20(S)-ginsenoside Rg3 (7); and 20(R)-ginsenoside Rg3 (8) in rat plasma. The established rapid method had high linearity, selectivity, sensitivity, accuracy, and precision. The method has been used successfully to study the pharmacokinetics of abovementioned eight ginsenosides for the first time. After an oral administration of total saponins in the stems-leaves of Panax ginseng C. A. Meyer (GTSSL) at a dose of 400 mg/kg, the ginsenosides 6, 7, and 8, belonging to protopanaxadiol-type saponins, exhibited relatively long tmax values, suggesting that they were slowly absorbed, while the ginsenosides 1–5, belonging to protopanaxatriol-type saponins, had different tmax values, which should be due to their differences in the substituted groups. Compounds 2 and 4, 3 and 5, 7 and 8 were three pairs of R/S epimerics at C-20, which was interesting that the t1/2 of 20(S)-epimers were always longer than those of 20(R)-epimers. This pharmacokinetic identification of multiple ginsenosides of GTSSL in rat plasma provides a significant basis for better understanding the clinical application of GTSSL.


Molecules | 2016

High-Performance Liquid Chromatography with Diode Array Detector and Electrospray Ionization Ion Trap Time-of-Flight Tandem Mass Spectrometry to Evaluate Ginseng Roots and Rhizomes from Different Regions

Hong-Ping Wang; You-Bo Zhang; Xiu-Wei Yang; Xin-Bao Yang; Wei Xu; Feng Xu; Shao-Qing Cai; Ying-Ping Wang; Yong-Hua Xu; Lian-Xue Zhang

Ginseng, Panax ginseng C. A. Meyer, is an industrial crop in China and Korea. The functional components in ginseng roots and rhizomes are characteristic ginsenosides. This work developed a new high-performance liquid chromatography coupled with electrospray ionization ion trap time-of-flight multistage mass spectrometry (LC–ESI-IT-TOF-MSn) method to identify the triterpenoids. Sixty compounds (1–60) including 58 triterpenoids were identified from the ginseng cultivated in China. Substances 1, 2, 7, 15–20, 35, 39, 45–47, 49, 55–57, 59, and 60 were identified for the first time. To evaluate the quality of ginseng cultivated in Northeast China, this paper developed a practical liquid chromatography–diode array detection (LC–DAD) method to simultaneously quantify 14 interesting ginsenosides in ginseng collected from 66 different producing areas for the first time. The results showed the quality of ginseng roots and rhizomes from different sources was different due to growing environment, cultivation technology, and so on. The developed LC–ESI-IT-TOF-MSn method can be used to identify many more ginsenosides and the LC–DAD method can be used not only to assess the quality of ginseng, but also to optimize the cultivation conditions for the production of ginsenosides.


Fitoterapia | 2014

Biotransformation of isoimperatorin by rat liver microsomes and its quantification by LC-MS/MS method.

Tian-Li Chen; You-Bo Zhang; Wei Xu; Tingguo Kang; Xiu-Wei Yang

The aim of the present research was to establish a comprehensive strategy to identify the metabolites of isoimperatorin after biotransformation with rat liver microsomes in vitro, and further describe metabolic kinetic characteristics of isoimperatorin and its main metabolites. Utilizing liquid chromatography with time of flight mass spectrometry (LC-TOF-MS), 18 metabolites (M 1-18) were characterized according to the typical fragment ions and literature data. Among them, M-2, 3, 5, 9, 10, and 15 were new compounds. To further verify structures of the metabolites, five main metabolites were obtained from the magnifying biotransformation incubation system, and their chemical structures were elucidated as 8-hydroxyoxypeucedanin (M-3), hydroxypeucedanin hydrate (M-4), E-5-(4-hydroxy-3-methyl-2-alkenyloxy)-psoralen (M-11), Z-5-(4-hydroxy-3-methyl-2-alkenyloxy)-psoralen (M-12), and oxypeucedanin (M-16) by various spectroscopy methods including IR, MS and NMR. A simple new liquid chromatography with triple quadrupole tandem mass spectrometry (LC-QqQ-MS) method was developed for the simultaneous determination of isoimperatorin and its main metabolites. The analysis was performed on a Diamonsil™ ODS C18 column with acetonitrile-water containing 0.1% formic acid as mobile phase. Total run time was 20.0 min. The results suggested that the method we exhibited was successfully applied for analysis of isoimperatorin and its metabolites. The study provides essential data for proposing metabolite pathway and further pharmacological study of isoimperatorin.


Journal of Asian Natural Products Research | 2011

Indoloquinazoline alkaloids from Euodia rutaecarpa and their cytotoxic activities

Xin Huang; You-Bo Zhang; Xiu-Wei Yang

Nine indoloquinazoline alkaloids (1–9) were isolated from the dried and nearly ripe fruits of Euodia rutaecarpa (Juss.) Benth. (Euodiae Fructus), along with limonin and β-sitosterol. Their structures were elucidated on the basis of their spectroscopic data. Among them, compounds 1 and 2 were new compounds and characterized as (7R,8S)-7-hydroxy-8-methoxy-rutaecarpine and (7R,8S)-7-hydroxy-8-ethoxy-rutaecarpine, respectively, and 1-hydroxy-rutaecarpine (3) and (7R,8S)-7,8-dihydroxy-rutaecarpine (4) were isolated from Euodiae Fructus for the first time. The nine indoloquinazoline alkaloids were evaluated for their cytotoxic activities against human promyelocytic leukemia HL-60 cells and human gastric carcinoma N-87 cells.


Molecules | 2017

Pharmacokinetics Studies of 12 Alkaloids in Rat Plasma after Oral Administration of Zuojin and Fan-Zuojin Formulas

Ping Qian; You-Bo Zhang; Yan-Fang Yang; Wei Xu; Xiu-Wei Yang

Zuojin formula (ZJ) is a traditional Chinese medicine (TCM) prescription consisted of Coptidis Rhizoma (CR) and Euodiae Fructus (EF), and has been used to treat gastrointestinal (GI) disease for more than 700 years. Fan-Zuojin formula (FZJ) is a related TCM prescription also consisted of CR and EF with the opposite proportion. In recent years, ZJ was getting more attention for its antitumor potential, but the indeterminate pharmacokinetic (PK) behavior restricted its clinical applications, and the PK differences between ZJ and FZJ were also largely unknown. Consequently it is necessary to carry out a full-scale PK study to demonstrate the physiological disposition of ZJ, as well as the comparative PK study between ZJ and FZJ to illustrate the compatibility dose effects. Therefore a liquid chromatographic–tandem mass spectrometry (LC–MS/MS) method was established and validated for the determinations of coptisine, epiberberine, palmatine, berberine, 8-oxocoptisine, 8-oxoepiberberine, noroxyhydrastinine, corydaldine, dehydroevodiamine, evodiamine, wuchuyuamide-I, and evocarpine in rat plasma. PK characteristics of 12 alkaloids after oral administration of ZJ and FZJ were compared, and the result was analyzed and discussed with the help of an in silico study. Then an integrated PK study was carried out with the AUC-based weighting method and the total drug concentration method. The established method has been successfully applied to reveal the PK profiles of the 12 alkaloids in rat plasma after oral administration of ZJ and FZJ. The results showed that: (1) double peaks were observed in the plasma concentration-time (C–T) curves of the alkaloids after ZJ administration; but the C–T curves approximately matched the two-compartment model after FZJ administration; (2) There were wide variations in the absorption levels of these alkaloids; and even for a certain alkaloid, the dose modified systemic exposure levels and elimination rate also varied significantly after administration of ZJ and FZJ extracts. The results could be interpreted as follows: firstly, inhibition effect on GI motility caused by the high content CR alkaloids (especially berberine) in ZJ could delay the Tmax, and increase the absorption and systemic exposure levels of the other alkaloids, and also lead to the double peak phenomenon of these alkaloids. However, for quaternary protoberberine alkaloids (QPA), double peaks were primarily caused by the different Ka value in two intestinal absorption sites; Secondly, absorption was the major obstacle to the systemic exposure level of the alkaloids from CR and EF. In silico and PK studies suggested that the absorption of these alkaloids, except QPAs, mainly depended on their solubility rather than permeability; Thirdly, EF could promote the absorption and accelerate the elimination of QPAs, and had a greater influence on the former than the latter. At last the integrated PK analysis suggested that berberine and dehydroevodiamine could be regarded as the representative components to reflect the PK behaviors of CR and EF alkaloids after administration of ZJ and FZJ. In conclusion, the absorption, elimination and systemic exposure level of these alkaloids were mainly influenced by the proportion of EF and CR, the pharmacological effect on GI motility, and the physicochemical property of these alkaloids. These findings would be helpful for a better understanding of the activities and clinical applications of ZJ, FZJ and other related TCM prescriptions.


Journal of Asian Natural Products Research | 2013

Ginsenjilinol, a new protopanaxatriol-type saponin with inhibitory activity on LPS-activated NO production in macrophage RAW 264.7 cells from the roots and rhizomes of Panax ginseng

Hong-Ping Wang; Xin-Bao Yang; Xiu-Wei Yang; Jianxun Liu; Wei Xu; You-Bo Zhang; Lian-Xue Zhang; Ying-Ping Wang

One new dammarane triterpene saponin named ginsenjilinol (1) was isolated from the roots and rhizomes of Panax ginseng C.A. Mey., together with two known saponins ginsenoside Rf (2) and ginsenoside Re5 ( = panajaponol A, 3). Based on IR, HR–ESI–MS, and 1D as well as 2D NMR (1H–1H COSY, NOESY, HSQC, and HMBC) spectral data, the chemical structure of the new saponin was elucidated as 3β,12β,20S,26-tetrahydroxydammar-24E-en-6α-O-β-d-glucopyranosyl-(1 → 2)-O-β-d-glucopyranoside. The ability of the isolated saponins to inhibit nitric oxide production by lipopolysaccharide-activated RAW 264.7 cells was also assayed. All of the isolated saponins exhibited the significant activity in a concentration-dependent manner at concentrations of 60–200 μM with the half maximal inhibitory concentration (IC50) values of 70.96 ± 2.05 μM for 1, 74.14 ± 2.65 μM for 2, and 79.83 ± 1.78 μM for 3, respectively, whereas indomethacin had an IC50 of 63.75 ± 3.33 μM as a positive control drug.


Molecules | 2017

Anti-Inflammatory Phenolic Acid Esters from the Roots and Rhizomes of Notopterygium incisium and Their Permeability in the Human Caco-2 Monolayer Cell Model

Xiu-Wen Wu; Wei Wei; Xiu-Wei Yang; You-Bo Zhang; Wei Xu; Yan-Fang Yang; Guo-Yue Zhong; Hong-Ning Liu; Shi-Lin Yang

A new ferulic acid ester named 4-methyl-3-trans-hexenylferulate (1), together with eight known phenolic acid esters (2–9), was isolated from the methanolic extract of the roots and rhizomes of Notopterygium incisium. Their structures were elucidated by extensive spectroscopic techniques, including 2D NMR spectroscopy and mass spectrometry. 4-Methoxyphenethyl ferulate (8) NMR data is reported here for the first time. The uptake and transepithelial transport of the isolated compounds 1–9 were investigated in the human intestinal Caco-2 cell monolayer model. Compounds 2 and 6 were assigned for the well-absorbed compounds, compound 8 was assigned for the moderately absorbed compound, and compounds 1, 3, 4, 5, 7, and 9 were assigned for the poorly absorbed compounds. Moreover, all of the isolated compounds were assayed for the inhibitory effects against nitric oxide (NO) production in the lipopolysaccharide-activated RAW264.7 macrophages model and L-N6-(1-iminoethyl)-lysine (L-NIL) was used as a positive control. Compounds 1, 5, 8, and 9 exhibited potent inhibitory activity on NO production with the half maximal inhibitory concentration (IC50) values of 1.01, 4.63, 2.47, and 2.73 μM, respectively, which were more effective than L-NIL with IC50 values of 9.37 μM. These findings not only enriched the types of anti-inflammatory compounds in N. incisum but also provided some useful information for predicting their oral bioavailability and their suitability as drug leads or promising anti-inflammatory agents.


Journal of Asian Natural Products Research | 2012

Biotransformation products of phellopterin by rat liver microsomes and the inhibition on NO production in LPS-activated RAW264.7 cells

Ai-Hong Zhao; Xin-Bao Yang; Xiu-Wei Yang; You-Bo Zhang; Wei Xu; Jian-Xun Liu

Four new coumarins (2′,3′-dihydroxyphellopterin, E-5-methoxytrichoclin acetate, Z-5-methoxytrichoclin acetate, and E-5-methoxytrichoclin) and three known coumarins (byakangelicol, byakangelicin, and Z-5-methoxytrichoclin) were produced by liver microsomes from rats pre-treated with sodium phenobarbital. The chemical structures were elucidated on the basis of their spectroscopic data. The inhibitory activities of nitric oxide (NO) production in lipopolysaccharide-activated macrophage-like cell line RAW264.7 were tested. The main biotransformation product, byakangelicin, showed inhibitory activities of NO production with the IC50 value of 217.83 μM, whereas the parent compound phellopterin showed cytotoxic effect on RAW264.7 cell at the concentration from 40 to 400 μM.

Collaboration


Dive into the You-Bo Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge