You-Cui Wang
Sichuan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by You-Cui Wang.
Molecular Psychiatry | 2015
Xue Yao; Shu-Sheng Jiao; Khalil Saadipour; Fan Zeng; Qing-Hua Wang; Chi Zhu; Lin-Lin Shen; Gui-Hua Zeng; Chun-Rong Liang; Jianing Wang; Yu-Hui Liu; Huayan Hou; Xingshun Xu; Su Yp; Fan Xt; Xiao Hl; Lih-Fen Lue; Yue-Qin Zeng; Brian Giunta; Jin-Hua Zhong; Douglas G. Walker; Hua-Dong Zhou; Jun Tan; Xin-Fu Zhou; You-Cui Wang
In Alzheimer’s disease (AD), neurodegenerative signals such as amyloid-beta (Aβ) and the precursors of neurotrophins, outbalance neurotrophic signals, causing synaptic dysfunction and neurodegeneration. The neurotrophin receptor p75 (p75NTR) is a receptor of Aβ and mediates Aβ-induced neurodegenerative signals. The shedding of its ectodomain from the cell surface is physiologically regulated; however, the function of the diffusible p75NTR ectodomain (p75ECD) after shedding remains largely not known. Here, we show that p75ECD levels in cerebrospinal fluid and in the brains of Alzheimer’s patients and amyloid-beta precursor protein (APP)/PS1 transgenic mice were significantly reduced, due to inhibition of the sheddase-tumor necrosis factor-alpha-converting enzyme by Aβ. Restoration of p75ECD to the normal level by brain delivery of the gene encoding human p75ECD before or after Aβ deposition in the brain of APP/PS1 mice reversed the behavioral deficits and AD-type pathologies, such as Aβ deposit, apoptotic events, neuroinflammation, Tau phosphorylation and loss of dendritic spine, neuronal structures and synaptic proteins. Furthermore, p75ECD can also reduce amyloidogenesis by suppressing β-secretase expression and activities. Our data demonstrate that p75ECD is a physiologically neuroprotective molecule against Aβ toxicity and would be a novel therapeutic target and biomarker for AD.
Translational Psychiatry | 2016
Shu-Sheng Jiao; Lin-Lin Shen; Chi Zhu; Xian-Le Bu; Yu-Hui Liu; Chang Liu; Xue Yao; Liang Zhang; Hua-Dong Zhou; Douglas G. Walker; Jun Tan; Jürgen Götz; Xin-Fu Zhou; You-Cui Wang
Reduced expression of brain-derived neurotrophic factor (BDNF) has a crucial role in the pathogenesis of Alzheimers disease (AD), which is characterized with the formation of neuritic plaques consisting of amyloid-beta (Aβ) and neurofibrillary tangles composed of hyperphosphorylated tau protein. A growing body of evidence indicates a potential protective effect of BDNF against Aβ-induced neurotoxicity in AD mouse models. However, the direct therapeutic effect of BDNF supplement on tauopathy in AD remains to be established. Here, we found that the BDNF level was reduced in the serum and brain of AD patients and P301L transgenic mice (a mouse model of tauopathy). Intralateral ventricle injection of adeno-associated virus carrying the gene encoding human BDNF (AAV-BDNF) achieved stable expression of BDNF gene and restored the BDNF level in the brains of P301L mice. Restoration of the BDNF level attenuated behavioral deficits, prevented neuron loss, alleviated synaptic degeneration and reduced neuronal abnormality, but did not affect tau hyperphosphorylation level in the brains of P301L mice. Long-term expression of AAV-BDNF in the brain was well tolerated by the mice. These findings suggest that the gene delivery of BDNF is a promising treatment for tau-related neurodegeneration for AD and other neurodegenerative disorders with tauopathy.
Cellular Physiology and Biochemistry | 2016
Qin Shen; Yong Yin; Qing-Jie Xia; Na Lin; You-Cui Wang; Jia Liu; Hang-Ping Wang; Apiradee Lim; Ting-Hua Wang
Background/Aims: To investigate the effects of bone marrow stromal cells (BMSCs) and underlying mechanisms in traumatic brain injury (TBI). Methods: Cultured BMSCs from green fluorescent protein-transgenic mice were isolated and confirmed. Cultured BMSCs were immediately transplanted into the regions surrounding the injured-brain site to test their function in rat models of TBI. Neurological function was evaluated by a modified neurological severity score on the day before, and on days 7 and 14 after transplantation. After 2 weeks of BMSC transplantation, the brain tissue was harvested and analyzed by microarray assay. And the coronal brain sections were determined by immunohistochemistry with mouse anti-growth-associated protein-43 kDa (anti-GAP-43) and anti-synaptophysin to test the effects of transplanted cells on the axonal regeneration in the host brain. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay and Western blot were used to detect the apoptosis and expression of BAX and BAD. Results: Microarray analysis showed that BMSCs expressed growth factors such as glial cell-line derived neurotrophic factor (GDNF). The cells migrated around the injury sites in rats with TBI. BMSC grafts resulted in an increased number of GAP-43-immunopositive fibers and synaptophysin-positive varicosity, with suppressed apoptosis. Furthermore, BMSC transplantation significantly downregulated the expression of BAX and BAD signaling. Moreover, cultured BMSC transplantation significantly improved rat neurological function and survival. Conclusion: Transplanted BMSCs could survive and improve neuronal behavior in rats with TBI. Mechanisms of neuroprotection and regeneration were involved, which could be associated with the GDNF regulating the apoptosis signals through BAX and BAD.
Scientific Reports | 2016
Qin-qin He; Liu-Lin Xiong; Fei Liu; Xiang He; Guo-Ying Feng; Fei-Fei Shang; Qing-Jie Xia; You-Cui Wang; De-Lu Qiu; Chao-zhi Luo; Jia Liu; Ting-Hua Wang
Neuroregeneration and apoptosis are two important pathophysiologic changes after spinal cord injury (SCI), but their underlying mechanisms remain unclear. MicroRNAs (miRNAs) play a crucial role in the regulation of neuroregeneration and neuronal apoptosis, research areas that have been greatly expanded in recent years. Here, using miRNA arrays to profile miRNA transcriptomes, we demonstrated that miR-127-3p was significantly down-regulated after spinal cord transection (SCT). Then, bioinformatics analyses and experimental detection showed that miR-127-3p exhibited specific effects on the regulation of neurite outgrowth and the induction of neuronal apoptosis by regulating the expression of the mitochondrial membrane protein mitoNEET. Moreover, knockdown of MitoNEET leaded to neuronal loss and apoptosis in primary cultured spinal neurons. This study therefore revealed that miR-127-3p, which targets mitoNEET, plays a vital role in regulating neurite outgrowth and neuronal apoptosis after SCT. Thus, modificatioin of the mitoNEET expression, such as mitoNEET activition may provide a new strategy for the treatment of SCI in preclinical trials.
Translational Psychiatry | 2015
Shu-Sheng Jiao; Xian-Le Bu; Yu-Hui Liu; Wang Qh; Chang Liu; Xue Yao; Xin-Fu Zhou; You-Cui Wang
Alzheimer’s disease (AD) is the primary cause of dementia in the elderly. The ectodomain of p75 neurotrophin receptor (p75NTR-ECD) has been suggested to play important roles in regulating beta-amyloid (Aβ) deposition and in protecting neurons from the toxicity of soluble Aβ. However, whether and how the serum and cerebrospinal fluid (CSF) levels of p75NTR-ECD change in patients with AD are not well documented. In the present study, we determined the concentrations of serum p75NTR-ECD in an AD group, a Parkinson disease group and a stroke group, as well as in a group of elderly controls without neurological disorders (EC). We also determined the levels of CSF p75NTR-ECD in a subset of the AD and EC groups. Our data showed that a distinct p75NTR-ECD profile characterized by a decreased CSF level and an increased serum level was present concomitantly with AD patients but not with other diseases. p75NTR-ECD levels in both the serum and CSF were strongly correlated with Mini-Mental State Examination (MMSE) scores and showed sound differential diagnostic value for AD. Moreover, when combining CSF Aβ42, CSF Aβ42/40, CSF ptau181 or CSF ptau181/Aβ42 with CSF p75NTR-ECD, the area under the receiver operating characteristic curve (AUC) and diagnostic accuracies improved. These findings indicate that p75NTR-ECD can serve as a specific biomarker for AD and the determination of serum and CSF p75NTR-ECD levels is likely to be helpful in monitoring AD progression.
Neuropeptides | 2015
Rong Rong; You-Cui Wang; Li-qun Hu; Qin-qin He; Xin-Fu Zhou; Ting-Hua Wang; Pei-li Bu
Platelet-derived growth factor-BB (PDGF-BB) plays a critical role in cell proliferation, angiogenesis and fibrosis. However, its exact role in cardiomyocytes exposed to hypoxia is not well known. This study was therefore designed to detect whether PDGF-BB expression was changed in a hypoxic condition, then the possible role of endogenous PDGF-BB in cardiomyocytes was explored, with interference RNA in a lentiviral vector ex vivo. The results showed that cultured cardiomyocytes exhibited an optimal proliferation from 3 to 10 days. However, LDH level was significantly increased but the heart rhythm was not altered in cardiomyocytes exposed to hypoxia for 24 hours. PDGF-BB expression was substantially upregulated in hypoxic cardiomyocytes. In order to know the role of PDGF-BB, we performed PDGF-BB knockdown in cultured cardiomyocytes. The number of apoptotic cells and the level of LDH were significantly increased but the beat rhythm was reduced in cardiomyocytes with PDGF-BB knockdown. These findings suggest that endogenous PDGF-BB exerts a crucial protective effect to cultured cardiomyocytes exposed to hypoxia.
Cellular and Molecular Neurobiology | 2013
Guan-nan Xia; Yu Zou; You-Cui Wang; Qing-Jie Xia; Bing-tuan Lu; Ting-Hua Wang; Jian-Guo Qi
Transplantation of neural stem cells (NSCs) into lesioned spinal cord demonstrated a beneficial effect for neural repair, the underlying mechanism, however, remains to be elusive. Here, we showed that NSCs, possessing the capacity to differentiate toward into neurons and astrocytes, exhibit a neuroprotective effect by anti-apoptosis mechanism in spinal cord hemi-transected rats despite it did not improve behavior. Intravenous NSCs injection substantially upregulated the level of BDNF mRNA but not its receptor TrkB in hemisected spinal cord, while caspase-7, a downstream apoptosis gene of caspase-3, has been largely down-regulated. TUNEL staining showed that the number of apoptosis cells in injured spinal cord decreased significantly, compared with seen in rats with no NSCs administration. The present finding therefore provided crucial evidence to explain neuroprotective effect of NSCs grafts in hemisected spinal cord, which is associated with BDNF upregulation and caspase-7 downregulation.
Cell Transplantation | 2017
Ai-Lan Pang; Liu-Lin Xiong; Qing-Jie Xia; Fen Liu; You-Cui Wang; Fei Liu; Piao Zhang; Bu-Liang Meng; Sheng Tan; Ting-Hua Wang
Traumatic brain injury (TBI) is a common disease that usually causes severe neurological damage, and current treatment is far from satisfactory. The neuroprotective effects of neural stem cell (NSC) transplantation in the injured nervous system have largely been known, but the underlying mechanisms remain unclear, and their limited sources impede their clinical application. Here, we established a rat model of TBI by dropping a weight onto the cortical motor area of the brain and explored the effect of engrafted NSCs (passage 3, derived from the hippocampus of embryonic 12- to 14-d green fluorescent protein transgenic mice) on TBI rats. Moreover, RT-PCR and Western blotting were employed to investigate the possible mechanism associated with NSC grafts. We found rats with TBI exhibited a severe motor and equilibrium dysfunction, while NSC transplantation could partly improve the motor function and significantly reduce cell apoptosis and increase B-cell lymphoma–extra large (Bcl-xL) expression at 7 d postoperation. However, other genes including Bax, B-cell lymphoma 2, Fas ligand, and caspase3 did not exhibit significant differences in expression. Moreover, to test whether Bcl-xL could be used as a therapeutic target, herpes simplex virus (HSV) 1 carrying Bcl-xL recombinant was constructed and injected into the pericontusional cortices. Bcl-xL overexpression not only resulted in a significant improvement in neurological function but also inhibits cell apoptosis, as compared with the TBI rats, and exhibits the same effects as the administration of NSC. The present study therefore indicated that NSC transplantation could promote the recovery of TBI rats in a manner similar to that of Bcl-xL overexpression. Therefore, Bcl-xL overexpression, to some extent, could be considered as a useful strategy to replace NSC grafting in the treatment of TBI in future clinical practices.
Neural Regeneration Research | 2017
Zhan-qiong Zhong; Yang Xiang; Xi Hu; You-Cui Wang; Xi Zeng; Xiao-meng Wang; Qing-Jie Xia; Ting-Hua Wang; Xiao Zhang
Synaptosomal-associated protein 25 kDa (SNAP-25) is localized on the synapse and participates in exocytosis and neurotransmitter release. Decreased expression of SNAP-25 is associated with Alzheimers disease and attention deficit/hyperactivity disorder. However, the expression of SNAP-25 in spinal cord contusion injury is still unclear. We hypothesized that SNAP-25 is associated with sensory and locomotor functions after spinal cord injury. We established rat models of spinal cord contusion injury to detect gene changes with a gene array. A decreased level of SNAP-25 was detected by quantitative real time-polymerase chain reaction and western blot assay at 1, 3, 7, 14 and 28 days post injury. SNAP-25 was localized in the cytoplasm of neurons of the anterior and posterior horns, which are involved in locomotor and sensory functions. Our data suggest that reduced levels of SNAP-25 are associated with sensory and locomotor functions in rats with spinal cord contusion injury.
Apoptosis | 2016
You-Cui Wang; Guo-Ying Feng; Qing-Jie Xia; Yue Hu; Yang Xu; Liu-Lin Xiong; Zhi-wei Chen; Hang-Ping Wang; Ting-Hua Wang; Xue Zhou